

MONORAIL 滚动直线导轨

免责声明

产品样册内容经过仔细核对,对于印刷中产生的错误我司不承担任何责任。如无书面认可,不得擅自翻印部分或全部样册内容。

产品介绍

1.1	MONORAIL产品简介	Page	3
1.2	MONORAIL产品特点	Page	5

2 技术参数

2.1	导轨	Page	10
2.2	2 导轨和驱动系统	Page	19
2.3	3 导轨和测量系统	Page	20
2.4	订货须知	Page	32
2.5		Page	34

3.0	简介	Page	35
3.1	型号、尺寸和选项	Page	38
3.2	技术参数	Page	40
3.3	配件	Page	52
3.4	订货编号	Page	59

4. 滚珠系列 – MONORAIL BM

4.0	简介	Page	61
4.1	型号、尺寸和选项	Page	64
4.2	技术参数	Page	66
4.3	配件	Page	78
4.4	订货编号	Page	84

5. 不锈钢滚珠系列 – MONORIAL BM WR / BM SR

5.0	简介	Page	85
5.1	型号、尺寸和选项	Page	88
5.2	技术参数	Page	90
5.3	配件	Page	98
5 1	计化绝异	Paga	00

6. 带齿条直线导轨MONORAIL BZ

6.0	简介	Page 101
6.1	型号、尺寸和选项	Page 104
6.2	技术参数	Page 106
6.3	配件	Page 110
6.4	订货编号	Page 114

/ MR 系列行程测量系统 MONORAIL AMS 3B

7.0	简介	Page 115
7.1	型号、尺寸和选项	Page 118
7.2	技术参数	Page 120
7.3	配件	Page 130
7.4	订货编号	Page 132

目 录

BM 系列行程测量系统 MONORAIL AMS 4B

8.0	简介	Page 133
8.1	型号、尺寸和选项	Page 136
8.2	技术参数	Page 138
8.3	配件	Page 150
8.4	订货编号	Page 151

MR 系列绝对式行程测量系统 MONORAIL AMSABS 3B

9.0	简介	Page 153
9.1	型号、尺寸和选项	Page 156
9.2	技术参数	Page 158
9.3	配件	Page 168
9.4	订货编号	Page 169

ID BM 系列绝对式行程测量系统 MONORAIL AMBABS 4B

10.0 简介	Page 171
10.1 型号、尺寸和选项	Page 174
10.2 技术参数	Page 176
10.3 配件	Page 188
10.4 订货编号	Page 189

对接式行程测量系统 MONORAIL AMSA 3L

11.0 简介	Page 191
11.1 型号、尺寸和选项	Page 194
11.2 技术参数	Page 196
11.3 配件	Page 206
11.4 订货编号	Page 208

1.1 MONORAIL产品简介

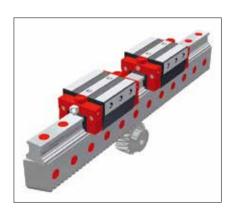
MR 滚柱直线导轨

MONORAIL MR滚柱直线导轨的主要特点是刚性好、静载和动载能力高、运行平稳,并且使用全密封的滑块。这样,在保证加工工件几何精度和表面质量的同时,又能达到较高的生产效率。由于导轨的刚性好、振幅小,因而提高了机床加工零件的质量和刀具的使用寿命。

SCHNEEBERGER公司在设计、生产和使用滚柱直线导轨方面积累了多年的经验,并在产品开发和批量生产中采用了最先进的生产工艺。所以对用户来讲,MONORAIL产品既能满足现代化制造业的要求,又是经济性的选择。

BM 滚珠直线导轨

SCHNEEBERGER的MONORAIL BM滚珠直线导轨具有良好的经济性和动态性能。滚道中的过渡组件少,运行性能好,保证了运行平稳、跳动小、磨损低、运行速度高。导轨采用梯形结构形式,增强了系统刚性,并降低了维护费用。滑块采用全密封设计,寿命更长,可靠性更高。


滚珠直线导轨的结构设计牢固,使其在对速度、可靠性和长时间运行有较高要求的工业应用中得到青睐。

BM WR / BM SR 不锈钢系列滚珠直线导轨

SCHNEEBERGER 的 MONORAIL BM WR/BM SR 系列导轨采用不锈钢材质,同时具有MONORAIL BM 滚珠直线导轨的产品性能。在很多应用中,腐蚀对加工件的移动有很大的影响,直线导轨采用的传统防锈涂层不能满足防锈要求,而不锈钢系列能应对恶劣的工况条件,并完全能满足这些应用需求。

MONORAIL BM WR/ BM SR 基于MONORAIL BM 滚珠系列导轨,因此具有其产品相同的性能优势,如出色的运行性能,速度快,使用寿命长。

BZ 带齿条滚珠直线导轨

SCHNEEBERGER的MONORAIL BZ系统是一种高精度直线导轨系统,带有齿条驱动,建立在MONORAIL BM滚珠直线导轨的基础上,具有直线导轨和和高精度齿轮驱动的共同优点,主要体现在吊装设备和自动化工业、激光、水刀切割机和木工机械等。

由于减少了齿条的制造和安装,机床的生产成本明显减少。单件系统长度可达6米。 MONORAIL BZ的设计结合了出色的运行特性、高承载能力、良好的刚性和使用寿 命长等优点。斜齿轮经过淬火磨制后体现出极佳的品质,因此具有更高的力传递 效率和定位精度,并且运行平稳。

1.1 MONORAIL产品简介

AMS 3B 一体式行程测量系统 - 滚柱导轨

MONORIAL AMS 3B 是一款基于MONORAIL MR 滚动直线导轨的绝对式一体式磁栅测量系统产品,特别为机床设备提供了结构紧凑的优化方案。系统安装简便,无需额外加工和调试,因此节省了机床设计、制造和维护成本。同时也提升了机床的精度和运行可靠性。牢固耐用的扫描头外壳同时带有纵向和交叉刮屑板,为测量系统提供完善的密封保护。

AMS 3B 可选模拟式或数字式信号。模拟式信号输出1Vpp的标准接口,适用于几乎所有常见的控制系统,同时也是AMSD 3B 数字式信号的基础。两种信号采用的导轨是一样的。

AMSD 3B 带有增量的数字式接口以及多种扫描头选项可选,连接控制系统时允许有不同的输入频率设置。

AMS 4B 一体式行程测量系统 - 滚珠导轨

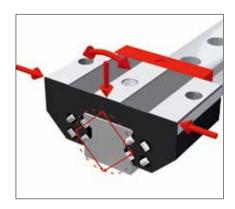
MONORIAL AMS 4B 是基于MONORIAL BM 滚珠直线导轨的一体式磁栅测量系统。 其工作原理同AMS 3B;因此同样具有装配简便、节省成本、高精度、运行可靠的产品性能优势。

AMS 4B 更多地应用在对运行速度、加速和抗振性能有很高要求的领域。

AMSABS 绝对式行程测量系统

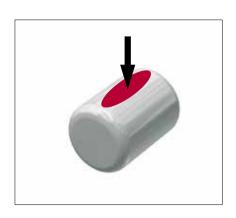
MONORIAL AMSABS 是一款带绝对式接口的磁栅测量系统,其中 AMSABS 3B 适用于 MONORIAL MR 滚柱导轨; AMSABS 4B 适用于 MONORAIL BM 滚珠导轨。我们在原有的AMS系列成熟产品上新增了更多的性能优势,进一步简化了测量系统在机床工业应用环境中的使用。如果采用绝对式信号,在重新开机后无需再次归零,节省加工时间和成本。同时,冗余信息提高了运行的可靠性。

AMSABS 配有一个绝对式接口适配SSI控制系统,SSI+SinCos 控制系统以及所有的FANUC控制系统。



AMS 3L 对接式行程测量系统

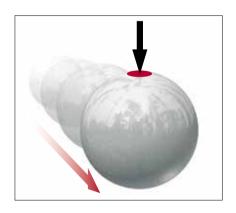
MONORAIL AMSA 3L 是基于MONORAIL MR 滚柱导轨的测量系统,带有模拟信号接口。 作为SCHNEEBERGER 最新研制的产品,它适用于超长行程的应用。AMSA 3L 采用高精密级的测量导轨,机械精度和测量过程的精度都非常高。


导轨对接缝和扫描头都采用特殊设计,不会造成信号丢失,因此测量行程可以达到 无限长。此外,AMSA 3L 具有导轨、滑块以及扫描头完全可互换的优势。

整个系统采用特殊的生产工艺,保证了AMSA 3L在全球范围内的供货周期。 AMSA 3L 配有1Vpp 接口,兼容几乎所有的标准型控制系统。

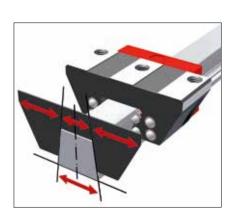
O型结构

由于导轨承载面的几何形状呈O形,支撑内部有较大的空间。滚道夹角呈90°,因此所有方向上承受的力都是一样的,由此可以获得较高的力矩刚性。

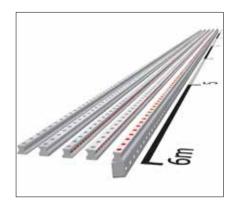


"腰鼓形"滚柱体

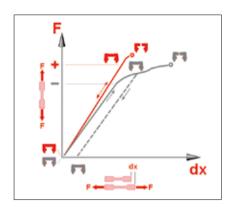
直线导轨对机床的整体刚性有很重要的影响。MONORAIL MR滚柱直线导轨通过"腰鼓形"的滚动体以及滑块和导轨截面的优化设计,能达到更好的刚性。


相对于滚珠导轨,滚柱导轨的接触面比前者明显大很多,因此承载能力有显著的提高。

这种腰鼓形结构能将接触面调整为承载面,并能从承载区域平稳地过渡到非承载区域。另外,因为滚动摩擦小,再加上它避免了边缘承载,这种结构使滚动体的磨损明显减少。


两个接触点的滚珠

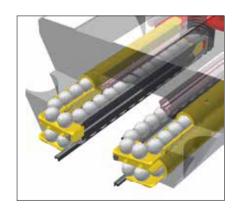
MONORAIL BM系列滚珠直线导轨采用新型的4排滚珠形式,滚珠和滚道之间即使在有预紧力或载荷的情况下并在承载区域的滚珠也只有两个接触点:导轨滚道的接触点和滑块滚道的接触点。相对于4点接触的导轨,这种两点接触的结构具有明显更大的承载能力。摩擦降低到最小,因此滑移更平稳、均匀。


梯形截面

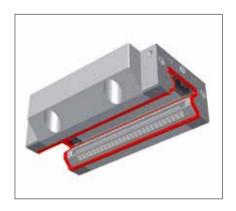
导轨截面呈梯形,优化了滑块横截面的几何形状,以及导轨基础面和其他结构的连接,以达到最佳的刚性。同时,这种梯形截面的导轨维护方便,端面板和辅助刮屑 板可直接更换而无需从导轨上先卸下滑块。

单根导轨可长达6m

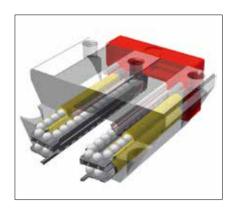
SCHNEEBERGER所有直线导轨产品的单根长度都可达6m,因此,需要的对接接缝相对较少。这不仅简化了导轨装配,而且提供了更高的精度和更长的系统使用寿命。


淬透滑块

如果机床要求较长的使用寿命和稳定的加工精度,滑块的基体就是非常重要的部件。为了满足这些要求,在极限载荷的情况下,整个使用寿命的周期里防止滑块发生塑性变形,SCHNEEBERGER公司采用高级轴承钢作为材料,不仅运行表面,整个滑块基体都经过淬火处理。即使承受的载荷超过额定值,MONORAIL滑块仍能保持原有的特性,而且不会发生塑性变形。


滑块的紧固螺孔

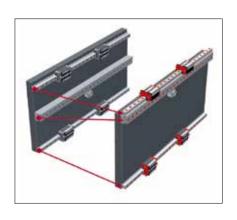
如果滑块承受拉力载荷,它的刚性大小很大程度上取决于周边结构。为了达到最大的刚性,SCHNEEBERGER所有的滑块顶部都有6个紧固螺栓孔。


杰出的运行特性

我们特别关注滚动体在运行中从非受载滚道到受载滚道的过渡。通过几何设计来保证滚动体过渡区内平稳的运行,在高速或低速运行的情况下防止滚动体的跳动、偏 移和运行噪音。

完全密封

MONORAIL滑块末端标配有双唇口刮屑板,顶部和底部有纵向刮屑板,加上端面板和基体之间的密封间隙,提供了一个非常完善的密封系统。因此能有效地阻止灰尘的进入,并使润滑剂的损耗减到最小,明显延长了使用寿命。导轨各个表面的平滑也能进一步体现刮屑板的功能。同时,SCHNEEBERGER还为导轨安装孔的密封提供了多种解决方案。


塑料材质的滚动体保持架

滚动体的滚道回路对滑块的运行特性有非常重要的影响。因此,所有的SCHNEE-BERGER产品都带有塑料的保持架。除了能减少噪音,保持架还形成了一个附加的储油装置,这种设计证明能明显延长滑块的使用寿命。

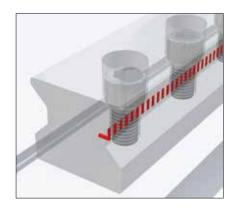
多种润滑接头布置

润滑接头有多种布置方式(正面、侧面或顶面),能根据客户需要设置油路。这样就能配合不同的润滑方式和安装情况提供最佳的油路设置。如果需要在特殊位置进行润滑,滑块的两侧都能提供独立的油路。

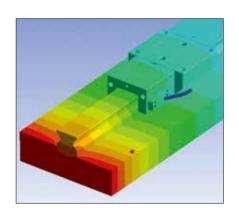
带齿条的导轨系统


高精度的齿条与导轨结合在一起,形成系统。单根导轨长度可达6m,可进行对接,并且能保持很高的精度。与独立的齿条相比,这种整体式结构明显地减少了生产、装配和物流成本。

现在,无需三个支撑面,而只需两个精确的支撑面就可以构成机床的一个轴。并且导轨和齿条系统之间也无需校正。

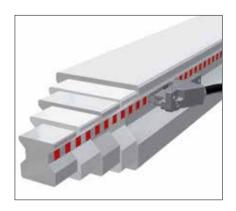

一体式磁栅测量系统

一体式磁栅测量系统将高精度的直线编码器和MONORAIL导轨结合在一起,安装简便,无需单独装配和调试,节省了设备的设计、生产和维修成本并且明显降低了系统的复杂性。

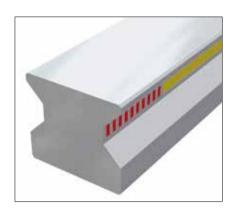

磁栅测量原理

传感器的工作是基于特殊的抗电磁干扰的测量过程。如果扫描头和磁尺之间有相对运动,扫描头内的传感器会随磁场的强度变化产生可测量的电阻变化。扫描头内的元件电路采用惠斯通电桥设计,将温度变化、设备老化和外部磁场的影响降到最低。扫描头能持续工作,以保证传感器的功能不受任何影响。扫描头更换之后也无需进行新的调试。

定位测量过程接近工件加工过程


因为磁尺和导轨之间的整体连接以及导轨和床身之间良好的刚性连接,保证了测量系统和床身之间有良好的热传递。优点是,床身的温度变化能直接传递到测量系统,因此无需另增基准点或温度传感器也能达到出色的运行稳定性。

磁尺热膨胀系数接近钢

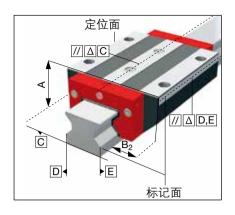

磁栅测量系统是安装在导轨上特制的凹槽中。采用特殊的铁磁材料,保证了因为温度影响造成的磁尺纵向膨胀与机床床身钢铁的热膨胀相同。

磁尺在整个长度上都牢固地安装在导轨上,因此和导轨具有完全一样的热膨胀,因此在加工钢铁工件的时候无需提供热补偿。

扫描头适用于所有尺寸的导轨

所有尺寸导轨安装的磁尺都是相同的,因此所有规格尺寸的系统使用的扫描头都是一样的。磁尺牢固地安装在导轨上,因此所有的故障都是由扫描头滑片磨损造成的。同一型号的扫描头适用于任何型号的导轨。基于以上三点,磁栅测量系统的维护量很有限,只需要更换少量的扫描头。

受保护的磁尺

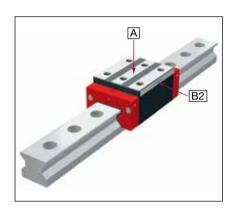

在生产过程中,有一根硬质的、非磁性的金属盖板保护磁尺,以免机械损伤和电磁 干扰。盖板是通过特殊的工艺用激光焊接到导轨上的,可以保护磁尺不受冷却液的 损害,不会磨损或断裂。通过这些完善的保护措施保证了磁尺的牢固、可靠。

整套系统的供货

SCHNEEBERGER可以根据客户要求,在供货时按需要安排系统供货,方便安装。在这种情况下,客户在收到整套的导轨和滑块后需检查产品是否符合要求。我们会根据不同的要求对产品采取不同的保护措施。因此,客户装配产品时只需进行整套系统和周边结构的校正,检查整套系统与驱动部件、润滑系统的连接以及测量系统和控制系统之间的连接。

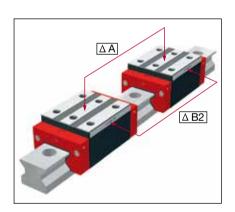
特性和选项

精度等级

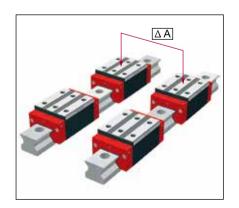

四种精度等级使用户能根据不同的应用和设计要求,选择所需要的导轨和滑块。精度等级决定了导轨的运行精度和滑块的尺寸公差。

--- GO GO超高精密级

-∼G1 G1高精密级


-◯ G2精密级

G3普通级



尺寸公差

MONORAIL导轨和滑块是相互独立生产的,两者的公差要求都很高,因此滑块和导轨之间完全可以互换。也就是说,在一根导轨上,同一规格型号的滑块均可以使用,不会受预紧等级的影响,因为预紧等级是由滑块的滚动单元决定的。至于任意导轨上任意滑块之间的尺寸偏差,可以在以下表格中找到。

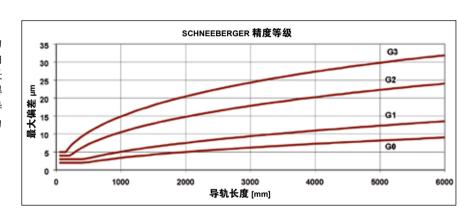
精度等级	滑块和导轨之间的尺寸 公差	单根导轨上不同滑块之间 的尺寸公差	2根或2根以上标准/选配导轨上,不同滑块之间的尺寸公差
	A/B ₂	ΔΑ/ΔΒ2	ΔA 标准
GO	± 5 μm	3 μm	10 μm
G1	± 10 μm	5 μm	20 μm
G2	± 20 μm	7 μm	40 μm
G3	± 30 μm	25 μm	60 μm
	在导轨任意位置上,滑块 的中心进行测量	在导轨的相同位置上,滑 块的中心进行测量	在相同导轨的相同位置 上,滑块的中心进行测 量。

特性和诜项

滑块选配

所有的滑块都采用同一种生产标准,其 顶部和侧面都经过磨削。尺寸A和B2都 在同一根检测导轨上进过检测,根据测 量结果选配滑块, 我们提供两种滑块选 配等级。

滑块选配	选配滑块间的最大尺寸偏差	
选项	Δ A/ Δ B2	
SLWGP0	3 µm	
SLWGP1	5 μm	


导轨选配

如果选择选配导轨,导轨会具有相似的 特性和尺寸偏差。选配工艺即在整根导 轨上测量并比较尺寸偏差,选择同一偏 差范围内的导轨。我们提供四种滑块选 配等级。

导轨选配	选配导轨的选配偏差	
选项		
SLSGP0	5 μm	
SLSGP1	10 μm	
SLSGP2	15 µm	
SLSGP3	20 μm	

运行精度

滑块的跳动精度在公差范围内可显示为 直线或者曲线。允许的最大偏差是由 导轨的精度等级决定的。而根据导轨长 度和精度等级,可以从图表中可以得 出实际公差。例如,精度等级G2的导 轨长度L3=2000mm,可以得出公差为 0.015mm_o

T2 T3

直线度

为了保证导轨的精度,必须了解导轨的直线度和弯曲度。因为导轨截面是不稳定 的,可能因为自身的重量产生纵向变形。在生产过程中也可能产生导轨变形。为了 满足客户的安装要求,我们已经在生产过程中优化了导轨的直线度。除了导轨变形 的标准公差, SCHNEEBERGER还可根据客户需要提供特殊公差和检测报告。

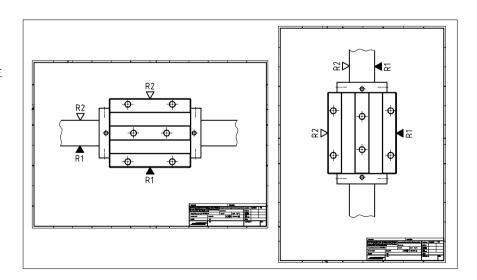
预紧等级

滚柱直线导轨都经过预紧处理,能在不同的承载情况下保持原有特性。基本上,预紧增加了导轨的刚性,同时也影响了使用寿命,加大了滑移阻力。SCHNEEBERGER为不同的应用要求提供了不同的预紧等级。预紧等级是由动态承载力决定的。

→ VO 非常低 → V1 较低 → V2 V2 中等

√√√№ V3 较高

特性和选项

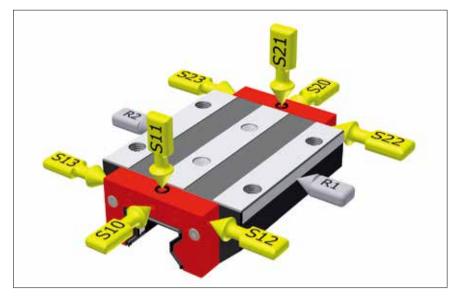

预紧等级			
VO	V1	V2	V3
预紧量			
0 - 0.02 x C ₁₀₀	0.03 x C ₁₀₀	0.08 x C ₁₀₀	0.13 x C ₁₀₀
运行条件			
摩擦力非常低的导轨, 适用于载荷不变、极少 震动的场合			
特性			
刚性	使用寿命	滑移阻力	

基准面

根据安装情况,在订货时必须标示出滑块和导轨的基准面(安装面)。 可以从图纸上辨别出,R2是指顶部或左

R1 以底部为基准面 R2 以顶部为基准面

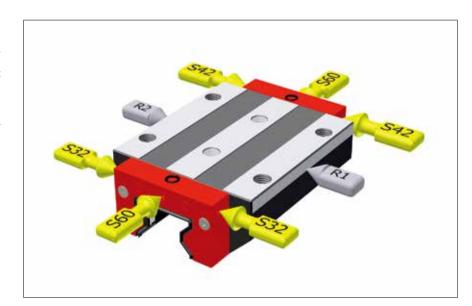
侧,R1是指底部或右侧。



特性和选项

润滑接口

端面板和滑块有很多润滑接口选项,提 供最优化的润滑方案以满足结构设计的 需求。每个接口都可使用润滑油嘴或中 央润滑系统。


作为标准出厂选项,四个滚道通过一个 润滑接口集中润滑。

对于特殊装配位置应用, 我们也提供独 立的润滑接口。

滑块两侧可提供单独的润滑接口,提高 了整个导向系统的润滑效率,从而延长 了使用寿命。

润滑孔的位置标识定义请参考下图中定 位边R1。

- **S10** ► S10 左侧中间
- S20 □ S20 右侧中间
- S11 € S11 顶部左侧
- S21 D部右侧
- S12 口 S12 左下侧
- S22 口 S22 右下侧
- S23 右上侧
- S32 上 S32 左侧
- S42 口 S42 右侧
- **s60 ▶□ 中央润滑(仅适用于MR25)**

特性和选项

供货状态

根据应用情况、存储条件和润滑的最终润滑形式,有多种出厂润滑方式可供客户选择。对于安装和运行过程需要持续润滑的应用来说,润滑油(LN)或少量脂润滑(LG)就能满足。

全部脂润滑推荐用于手动润滑

△。LN LN 油润滑

LG 少量脂润滑

LV 全部脂润滑

摩擦

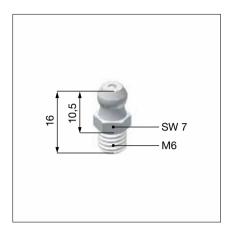
滑移力是导轨系统特性中一个重要的参考值。在直线导轨系统中,它很大程度上取决于密封系统的摩擦阻力。滚动体改变方向、返回时,也会产生滑动摩擦力。同时,润滑形式、承载力以及运行速度等外部因素也会产生摩擦力。 SCHNEEBERGER采用高科技材料制造产品配件,以减小密封系统的摩擦力。

涂层

对于防锈有特殊要求的应用,例如洁净室应用、湿度高的应用或者对导轨表面抗磨损有一定要求的应用场合,MONORAIL 导轨和滑块也提供镀铬选项。 采用镀铬涂层具有以下优势:

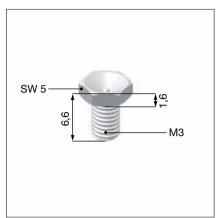
- 提供出色的防锈保护
- 抗磨损,同时承载力大
- 由于其纳米结构,具有杰出的运行特性
- 出色的镀层附着性
- 镀层厚度均匀

需注意,安装孔、螺栓和滚动件不可镀铬

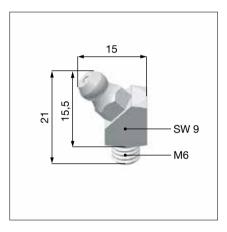

CN LN 非镀铬

CH 镀铬

脂润滑油嘴


润滑油嘴SN 6

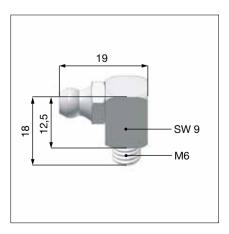
直润滑油嘴


润滑油嘴 SN 3-T

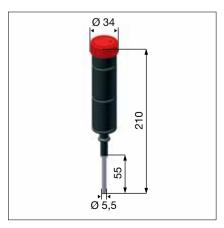
M3漏斗式润滑油嘴

润滑油嘴SN 6-45

45°润滑油嘴


润滑油嘴 SN 6-T

M6 漏斗式润滑油嘴

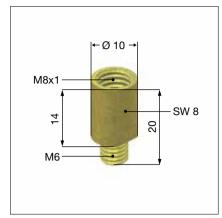

润滑油嘴 SN 6-90

90° 润滑油嘴

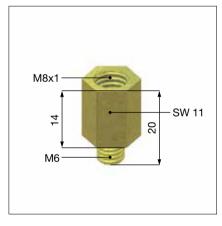
注油枪

用于SN 3-T和SN 6-T的注油枪

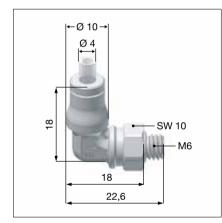
润滑用变径接头


变径接头SA 3-D3

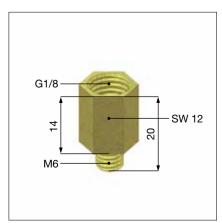
M3直线螺旋式接头


变径接头SA 6-RD-M8

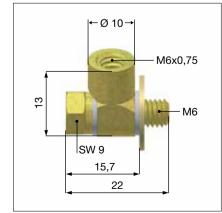
M8 圆头变径接头


变径接头 SA 6-6KT-M8

M8 六角接头


摆角接头 SV 6-D4

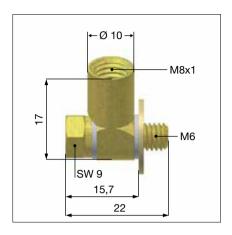
用于外接油管外径4mm


变径接头 SA 6-6KT-G1/8

G1/8 六角接头

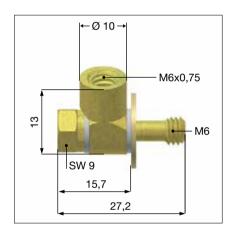
摆角接头 SV 6-M6

M6摆角接头(铝制密封圈)

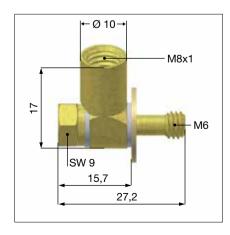


润滑配件

摆角接头


摆角接头 SV 6-M8

M8摆角接头(铝制密封圈)


摆角接头 SV 6-M6-L

加长型M6摆角接头(铝制密封圈)

摆角接头 SV 6-M8-L

加长型M8摆角接头(铝制密封圈)

正常使用条件下的一般应用

运行	MR	ВМ
最高速度	3 m/s	5 m/s
最大加速度	50 m/s ²	100 m/s ²

允许更大的速度和加速度,但取决于滑块的型号、润滑、安装位置和承载力。如果 需要加大速度和加速度,请在运行前来电咨询。

工作环境	MR	ВМ
工作温度	-40°C - +80°C	-40°C - +80°C
仓储温度	-40°C - +80°C	-40°C - +80°C
震动/冲击	30 g	30 g

材料

 导轨	轴承钢,表面淬火
滑块	轴承钢,全淬透
滚动体	轴承钢,全淬透
保持架	POM,PAPA,TPU 注塑

特性和诜项

特性

MONORAIL BZ 方案为带齿条的导轨提供了单根长度可达6m的解决方案。同时,可以通过对接的方式加长到任意长度。

前提条件是,对接导轨须经过特殊处理,安装和校正使用专用的辅助装置。 为了运输较长的对接导轨,采用特殊的铝制横梁固定在导轨上,以保证齿轮的安全,在安装完成后移除。它保证了齿轮在运输、安装和调试中不会发生变形。 与其他系统相比,由于MONORAIL BM导轨的安装孔多了一倍,因此BZ系统上齿条与导轨之间有更多的连接。这意味着能承受更大的侧向力,同时实现高密度的紧凑设计。

齿条质量

SCHNEEBERGER的MONORAIL BZ导轨内置有安装好的齿条。这种齿条的设计专门用于机床应用。采用模数2.5和模数2.0,倾角20°的齿轮以减少噪音并实现平稳的运行。

根据客户的需要, 齿轮可采用以下两种不同的精度等级

订货编号:

DIN 5级精度:淬火处理,磨制-**Q5H**-DIN 6级精度:调质处理,铣削-**Q6S**-

与其他驱动系统的比较

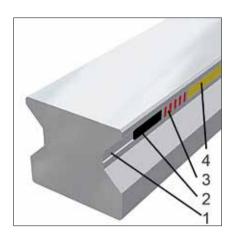
与其他直线运动方案相比, BZ系统具有很多优势。

如果同时采用滚珠丝杠,BZ系统可以实现导向系统上多个独立的运动。

MONORAIL BZ系统具有出色的刚性,它采用模块式结构,因此不受长度和温度的影响。

如果齿条系统产生磨损,可进行部分更换。

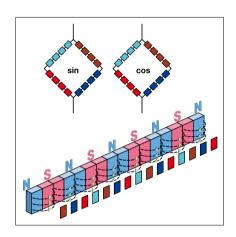
导轨和齿条都采用精密加工处理,组合成了非常平稳的运行齿轮导向系统。因此驱 动系统在整个长度和整个使用寿命中都保持相同的预紧。


与合适的电机或减速机配合使用,在断电情况下系统会自锁。

与直线电机相比,MONORAIL BZ系统是一种更经济、简便的选择,具有更高的效率。它是加工各种不同材料的大型工件的理想解决方案。

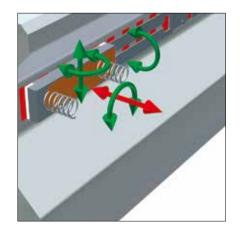
基本技术参数

参见2.1章 导轨技术参数


抗电磁测量系统

磁尺结构

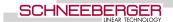
磁尺有两种磁道:N极和S极呈200um间隔排列的增量磁道以及确定绝对位置的基准磁道。基准磁道可带有距离编码或只有基准标记,距离编码是在一定间隔上标注的。


磁尺是完全内置在导轨中的。首先在加工好的导轨上加工一条凹槽(1),插入磁条(2),磁条经过磨制和磁化,形成磁尺(3)。最后,为了保护磁尺,将一根全淬透的盖板焊接在导轨上(4)。

抗磁性传感器

如果扫描头和磁尺之间有相对运动,扫描头内的传感器会随磁场的强度变化产生可测量的电阻变化。扫描头内的元件电路采用惠斯通电桥设计,将温度变化、设备老 化和外部磁场的影响降到最低。

从磁化强度的增量变化和传感器的镰刀型排列可以得到两个相位差为90°的正弦状信号。为了提高精度,将104个磁栅的信号做平均处理。扫描头的结构合理,能与磁栅变化周期相适应,因此磁尺可有效地防止外部磁场的干扰。

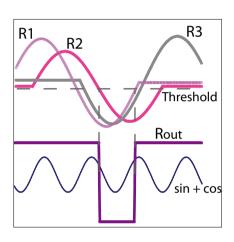


独立传感器

所有测量信号特性(相位、振幅差、谐波特性)的精确度均取决于传感器。只要电路保持稳定,即使位置偏差很大也不会影响信号质量。

因此,更换扫描头无需再次进行校正。

同时,增强了抗震和抗冲击能力并扩大了扫描头允许的运行公差范围。

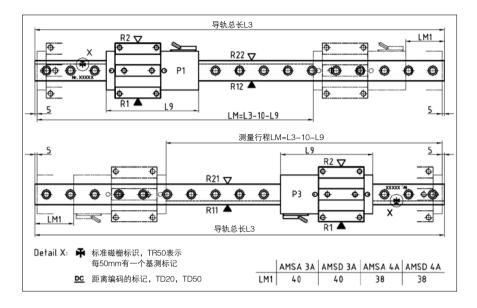


抗电磁测量系统

1 V_{pp} AGC

AGC运行原理

测量系统会持续测量电流幅值(由周期信号产生)。如果发生偏差,电流幅值会自动调节。因此,即使在特殊情况下(安装错误,外部错误或滑片拆除)都会有标准输出信号产生。


基准点识别

另一根带有AMS基准标记的磁道用于测定绝对位置和系统的基准位置。基准点是由3个磁栅上的基准标记组成。基准脉冲的上升和下降波段各形成一个基准标记。第三个基准标记是冗余的,它增加了基准点识别系统的运行可靠性。这种运行原理防止了外部磁场的影响,并且,在不确定的情况下,即使发现冲突也不会产生基准信号。

特性和选项

磁栅

MONORAIL AMS测量系统上的基准标识是激光雕刻的。左图显示了测量滑块在处理第一个基准标记时的位置。

TR50 基准标记间隔为50mm

TD50 基准标记带有距离编码

基准标记在50.2/49.8/50.4/49.6/50.6/49.4/../../...mm距离处进行编码

TD20 基准标记带有距离编码

基准标记在20.2/19.8/20.4/19.6/20.6/19.4/../...mm距离处进行编码 此选项的测量长度最大2.8m

TR50 基准点, 间隔50mm

TD50 距离编码, 间隔50mm

TITIT TD20 距离编码,间隔20mm

扫描头位置和接触面

订单中, SCHNEEBERGER会确定扫描头的接触面, 磁尺的位置以及导轨和滑块的接触面, 如上图所示。将图纸逆时针旋转90°,得到导轨的纵向图。在订货时,必须包括以下信息。

导轨基准面和磁尺位置

-----R11 R11 基准面在下,磁尺在下

R12 基准面在下, 磁尺在上

R21 基准面在上, 磁尺在下

扫描头位置

P1 支架位于右侧,扫描头朝上

₽2 P2 支架位于左侧,扫描头朝上

P3 支架位于左侧,扫描头朝下

P4 支架位于右侧,扫描头朝下

滑块接触面

R1 以底部为基准面

R2 以顶部为基准面

扫描头接头

接头TSU/TSD

带内旋螺纹的12芯圆插头 电缆长度: 3m

TSU

TSD

接头TRU/TRD

带外旋螺纹的12芯圆插头 电缆长度: 3m

-**◯**■ TRU

- ☐ TRD

接头TMU/TMD

带安装基座的12芯圆插头 电缆长度: 0.3m

TMD

扫描头接头

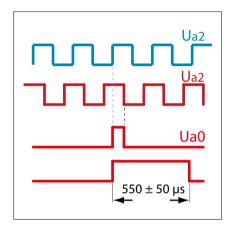
TRH / TMH 接口

接口布置

	接头TSU / T	RU / TMU	接头TSD / T	RD / TMD
针脚	信号	信号类型	信号	信号类型
1	-Ua2	- Cosine	- Ua2	A quad B 信号
2	+5V 传感器	电压反馈	+5V 传感器	反馈电压
3	+Ua0	基准信号	+Ua0	同步基准信号
4	-Ua0	基准信号	- Ua0	同步基准信号
5	+Ua1	+ Sine	+Ua1	A quad B 信号
6	-Ua1	- Sine	- Ua1	A quad B 信号
7	-Uas	NC	- Oas	出错信号, 最小周期 20 ms
8	+Ua2	+ Cosinue	+ Ua2	A quad B 信号
9	-	NC	-	NC
10	OV (GND)	电压	OV (GND)	电压
11	0V 传感器	电压反馈	0V 传感器	反馈电压
12	+5 V	电压	+5 V	电压

针脚	信号	型号类型
1	+5V 传感器	电压反馈
2	-	NC
3	-	NC
4	OV 传感器	电压反馈
5	-	内部定义参数
6	TxD	内部定义参数
7	+5V 或 24V	供电电压
8	+CLK	+ Pulse
9	-CLK	- Pulse
10	OV (GND)	供电电压
11	-	内部显示屏
12	+Ua2	+ Cosine
13	- Ua2	- Cosine
14	+DATA	+ Data
15	+Ua1	+ Sine
16	- Ua1	- Sine
17	- DATA	- Data

扫描头接头


00S sin Uaref 360 +/- 45°

模拟信号接头TSU/TRU/TMU

如图所示,信号根据微分增益被转换。增量信号在其相位上显示为90°。增量信号和基准信号在微分增量后显示为1+/-0.1Vss。增量信号提供的有效值在0.6Vss到1.2Vss之间。

按照生产标准,基准脉冲设置为与正弦和余弦的交集(在45°位置)相对称。如图 所示,基准脉冲的宽度和相位是有限的。在信号接收方面,通过使用增量信息来提 高基准标识的精度。

这种接头能用于所有支持1Vss接口的标准控制系统。

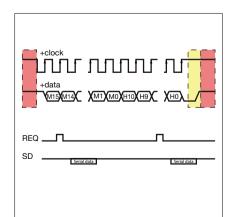
数字信号接头TSD/TRD/TMD

增量信号A+,A-,B+,B-和基准信号R+,R-根据RS422接口协议传输补充数据。左图显示了正信号,各个信号的电平如下

高位>2.5V 低位<0.5V

上升沿和下降沿小于20ns。从最大输出频率可以计算出最小信号间隔。顺向电流必须能够顺利地处理最大输出频率。

选项ZN: 基准脉冲信号与基准信号完全同步

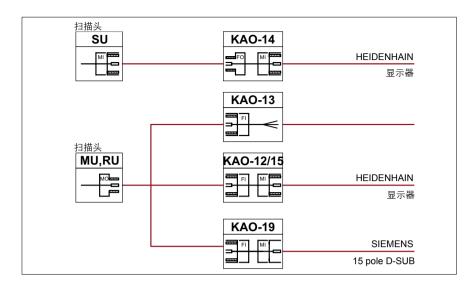

选项**ZF**: 基准脉冲信号扩大到550us+/-50us。 此选项用于不能处理多个短期基准脉冲信号的评估电子。

以下分辨率、最大输出频率和基准脉冲选项的组合可用于所有扫描头和接口

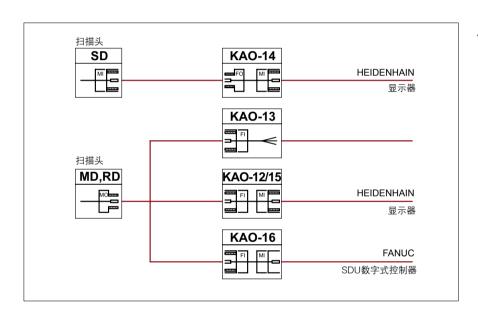
- -010-80-ZN 5 µm, 分辨率 10x, 最大输出频率 8 MHz
- -050-80-ZN 1 μm, 分辨率 50x, 最大输出频率 8 MHz
- -250-80-ZN 0,2 μm, 分辨率 250x, 最大输出频率 8 MHz
- -010-80-ZF 5 µm, 分辨率 10x, max. 最大输出频率 8 MHz
- -050-80-ZF 1 µm, 分辨率 50x, max. 最大输出频率 8 MHz
- -250-80-ZF 0,2 µm, 分辨率 250x, 最大输出频率 8 MHz

订货编号:

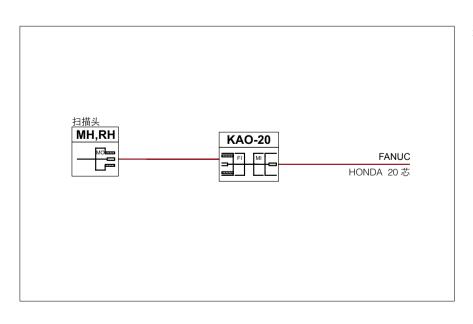
-010-80-ZN 5 μm, 分辨率10x, 最大输出频率8MHz, 标准基准脉冲信号


TRH / TMH 绝对式接口

绝对值信息可通过数字接口或混合型接口传输。


如果采用数字是SSI接口,第一通道 (+pulse) 会从接收器发送一个时钟信号到测量系统;第二频道(+data) 从测量系统同步发送绝对值位置信息到电子信号处理器。另外一个应用案例是数字式 "FANUC 串联信号"。电机控制系统仅发送一个请求信号(REQ)而不是脉冲,测量系统根据这个信号计算同步脉冲重复频率,然后将位置信息和补充数据(SD)发送给信号接收器。

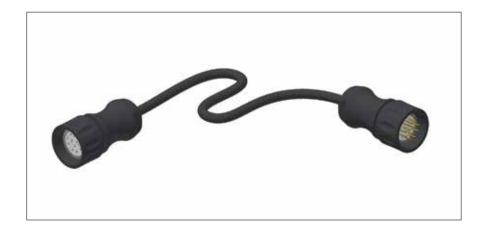
SSI+SinCos 双接口在打开后仅发发送数字式的绝对起始位置,之后开始发送增量式的1Vpp信号。


配件-电缆

用于模拟信号扫描头的电缆

用于数字信号扫描头的电缆

绝对式扫描头电缆

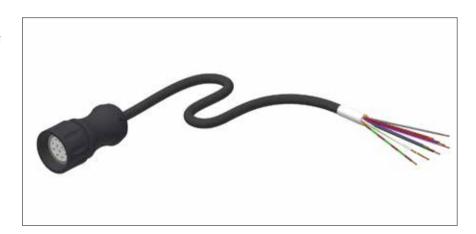

配件-电缆

KAO 12

12芯连接电缆,内螺纹插座-内螺纹插头

订货编号: **KAO 12-xx** xx = 长度(m),可选长度3,5,10 ,15和20m

例如: KAO 12-5

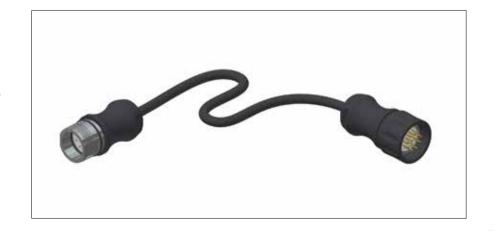


KAO 13

12芯连接电缆,内螺纹插座 – 插头一端 为散线

订货编号: **KAO 13-xx** xx = 长度(m),可选长度3,5,10 ,15和20m

例如: KAO 13-5



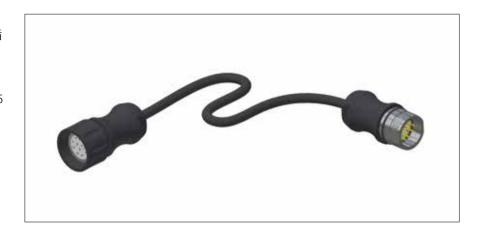
KAO 14

12芯延长电缆,外螺纹插座 – 内螺纹插头

订货编号: **KAO 14-xx** xx = 长度(m),可选长度3,5,10 ,15和20m

例如: KAO 14-5

配件-电缆


KAO 15

12芯延长电缆,内螺纹插座-外螺纹插

订货编号: KAO 15-xx

xx=长度(m),可选长度3,5,10,15,20m

例如: KAO 15-5

KAO 16 用于FANUC 模拟式接口

12芯连接电缆,内螺纹插座 – FANUC 专用插头

订货编号: KAO 16-xx

xx = 长度(m),可选长度3,5,10,15和20m

例如: KAO 16-5

KAO 19 用于SIEMENS 模拟式接口

12芯连接电缆,内螺纹插座 – D-SUB 专用插头

订货编号: KAO 19-xx

xx = 长度(m),可选长度3,5,10,15和20m

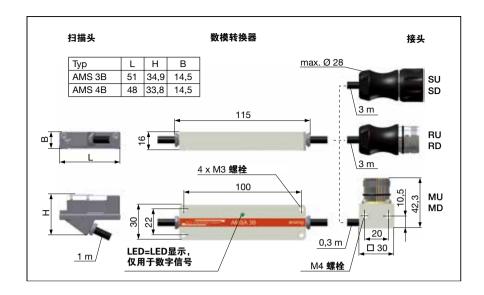
例如: KAO 19-5

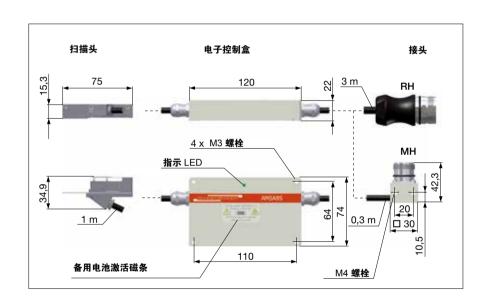

KAO 20 用于FANUC 绝对式接口

17芯连接电缆,内螺纹插座 – HONDA 专用插头

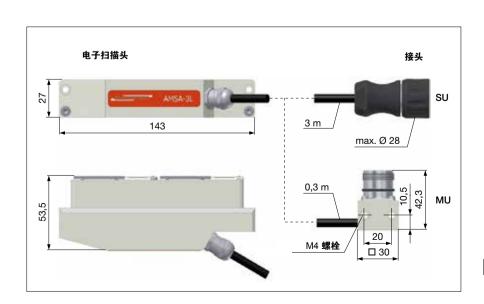
订货编号: KAO 20-xx

xx = 长度(m),可选长度3,5,10,15和20m


例如: KAO 20-5



扫描头尺寸


AMS 3B/4B

AMSABS 3B/4B

AMSA 3L

基本技术参数

系统特性

有	硬磁 周期性N-S刻度
月 2	200 μm
ŧ	
<u>Б</u>	IP 68
夏 0	0°C - +70°C
₹ -2	-20°C - +70°C
击 3	30 g

AMSA 3B 和 AMSA 4B

精度

精度等级	+/- 5 μm / 1000 mm +/- 2 μm / 40 mm
周期偏差	+/- 0,7 μm
分辨率	max. 0,0625 μm
磁滞	< 0,5 - 1 μm
接口	
模拟式	1 Vss电压接口
供电电压	5 V +/- 0,25 V
	每个扫描头40 mA

AMSD 3B 和 AMSD 4B

精度

精度等级	+/- 5 μm / 1000 mm +/- 2 μm / 40 mm
周期偏差	+/- 0,1 μm
分辨率	0,2 μm / 1,0 μm / 5,0 μm
磁滞	< 0,5 mm 或数字调节
接口	
数字式	RS 422信号、基准信号和出错信号
	基准脉冲信号90°或500μs(用于FANUC-CNC控制系统)
供电电压	5 V +/- 0,25 V
	每个扫描头110 mA

基本技术参数

AMSABS 3B 和 4B

精度

精度等级	+/- 5 μm / 1000 mm +/- 2 μm / 40 mm
周期偏差	+/- 0,7 μm
磁滞	0,5μm – 1μm
接口	
数字式	e.g. 循环同步串行接口(SSI) 或FANUC 串行接口
供电电压	5 V ± 10% 或 24 V ± 10%
	< 200 mA 空载输出
绝对式分辨率	max. 0,09765625 μm
混合接口	循环同步串行接口带1Vpp模拟输出
供电电压	5 V ± 10% 或 24 V ± 10%
额定电流	< 200 mA 空载输出
绝对式分辨率	max. 0,09765625 μm
模拟式分辨率	max. 0,09765625 μm

AMSA 3L

材料	硬磁材质
信号周期	200 μm
基准标记	与安装孔距同步
长度	标准长度≈3 m
速度	1 m/s
精度	$\Delta X_{pp} = \pm 7 \ \mu m, \ \Delta X_{S1S2} = \pm 5 \ \mu m$
精度等级	+/- 5 µm / 1000 mm +/- 2 µm / 40 mm
工作环境	
保护等级	IP 67
工作温度	0° - 70° C
仓储温度	-20° - 70° C
震动/冲击	10 g

 ΔX_{S1S2} : 扫描头特性 ΔX_{pp} : 最大偏差 (累积所有偏差值)

2.4 订货须知

订货编号和示例

为了更容易理解产品结构,我们已经在新样本中更新了MONORAIL产品的订货编号和手续。

用新的订货编号,您可以更清楚地给单个产品,如备件、单根导轨或单个滑块,以及整套MONORAIL产品下订单。导轨、滑块和配件使用单独的订货编号,包括不同规格的导轨和滑块。

单独的导轨、滑块和配件的订货编号可以在样本第三章之后的章节中找到。我们尝试编入所有的型号规格以减少订货出错率。

如果需要预装配发货,必须采用下列订货编号:

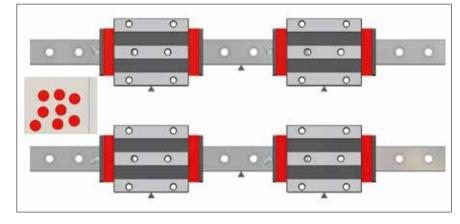
MONORAIL 系统订货编号

内容: NB

/ n x S S = 导轨的完整编号 / n x W W = 滑块的完整编号

 / n x W (选项)
 Z = 配件的完整编号

 / n x S (选项)
 "/" = 订单中的任意项


/ n x W (选项) n =数量,表示同一型号的数量

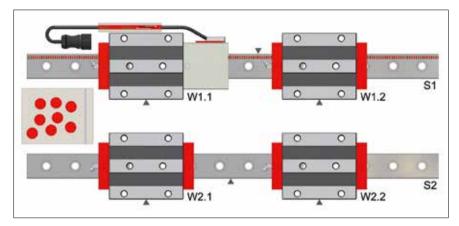
/nxZ

如果没有客户指定的要求,导轨和滑块根据订货项目的顺序进行装配。第一根导轨编号后面跟的是这根导轨上从左到右安装的滑块;第二根导轨编号后面的是这根导轨上从左到右安装的滑块,详见例2。

意味着,如果导轨、滑块的型号都不同,滑块从左到右应标注在所安装导轨的编号后面。

例1: 不带图纸的订单-相同型号的组件

两根相同导轨上安装的两个相同的滑块、配件(辅助刮屑板)清楚地根据编号装配。


发货时, 堵头是不安装的。

订货内容:

/ 2 x MR S 35-N-G1-KC-R1-918-19-19-CN / 4 x MR W 35-B-G1-V3-R1-CN-S10-LN / 2 x MRK 35 (50 件) / 8 x ZCN 35 / 4 x SN 6-45

订货编号和示例

例2: 不带图纸的订单-不同型号的组件

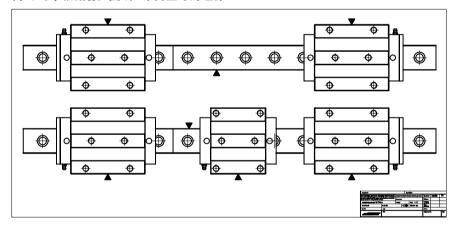
2根不同的导轨和两个不同型号的滑块 以及相同的润滑配件根据订货编号的顺序进行排列和分配。

订货内容:

/ 1 x AMSA 3B S 35-N-G1-KC-R22-918-19-19-CN-TR50 (S1)

/ 1 x AMSA 3B W 35-B-P1-G1-V3-R1-CN-S10-LN-TSU (W1.1)

 $/1 \times MRW 35-B-G1-V3-R1-CN-S10-LN$ (W1.2)


/ 1 x MR S 35–N–G1–KC–R1–918–19–19–CN (S2)

/ 2 x MR W 35–B–G1–V3–R1–CN–S10–LN (W2.1 + W2.2)

/ 2 x MRK 35 (50 件)

/ 4 x SN 6-45

例3: 订单根据客户图纸 - 不同型号的组件

两根不同的导轨,对接,5个不同型号 的滑块

如果没有图纸,导轨、滑块和配件不可 能清楚地排列

订货内容:

/ 1 x MR S 35-ND-G1-KC-R1-2478-19-19-CN (对接长度 L3 = 999mm/1479mm)

/ 1 x MR W 35-B-G1-V3-R2-CN-S13-LN

/ 1 x MR W 35-B-G1-V3-R2-CN-S23-LN

/ 1 x MR S 35-ND-G1-KC-R2-2478-19-19-CN (对接长度 L3 = 999mm/1479mm)

/ 1 x MR W 35-B-G1-V3-R1-CN-S12-LN

/ 1 x MR W 35-A-G1-V3-R1-CN-S12-LN

/ 1 x MR W 35-B-G1-V3-R1-CN-S22-LN

/5×MRK 35 (125 件)

/ 4 x ZCN 35

/5 x SN 6

活如.

如果是特殊的MONORAIL系统,除了订货名称,还需要提供其他信息以保证顺利订货。因此,客户提供的图纸应提供以下信息:

- 对接导轨每根的长度和顺序
- 如果单根导轨上使用不同型号的滑块, 应注明滑块型号及其位置
- 辅助刮屑板、润滑油路和润滑配件的位置

注意事项

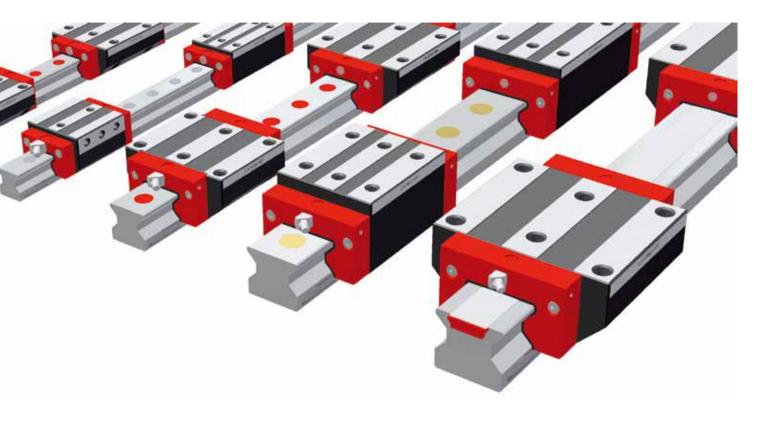
为了能够在导轨使用寿命期间充分发挥MONORAIL导轨的功能,必须遵循以下注意事项:

所有的SCHNEEBERGER产品都属于高精度构件,运输和仓储注意防震动、防碰撞和防潮。

测量系统也应遵循运输和安装注意事项。

必须由专业人员进行导轨的安装。请从我公司网站www.schneeberger.com下载安装指导。

根据运行和承载情况选择合适的润滑剂。如果需要,可咨询相关润滑材料厂商以正确选择润滑材料。也可以在我公司网站上得到相应的建议。


在使用前,用户必须验证冷却液和润滑剂的相容性,以避免其对导轨产生不良影响。

当导轨受到灰尘污染,或直接与金属屑、冷却液接触,建议加装保护盖板或调整安装位置。

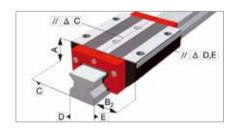
如果在加工过程中可能接触到灰尘污染或冷却液,需要安装辅助刮屑板,并定期检查以保证其长期有效性。可在公司网站上找到相应的使用指导。

定期检查滑块端面板和辅助刮屑板上刮屑唇口的磨损情况,及时更换。

MONORAIL滚柱直线导轨的主要特点是刚性好,能承受很大的动态载荷和静态载 荷,运行平稳,滑块全密封。它特别为机床行业设计,保证了机床加工精度和工件 表面质量并显著提高了工作效率。杰出的刚性以及与床身良好的配合减小了系统的 振动,从而延长了导轨的使用寿命。

公司在设计、生产和使用滚柱直线导轨方面积累了多年的经验,并在产品开发和生 产中不断优化,保持最先进的技术。MONORAIL产品对用户而言,既能满足现代化 机械制造的要求,又是经济性的选择。

MONORAIL MR 系统的特点



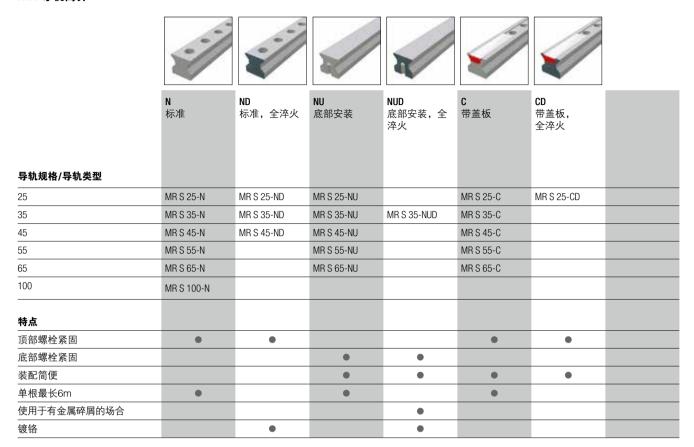
导轨简介	Page 38
滑块简介	Page 39

3.2 技术参数和选项

MR 25	Page 40
MR 35	Page 42
MR 45	Page 44
MR 55	Page 46
MR 65	Page 48
MR 100	Page 50

3.3 MONORAIL MR 配件

MR配件一览表	Page 52
MR导轨配件详述	Page 53
MR滑块配件详述	Page 56


3.4 订单格式

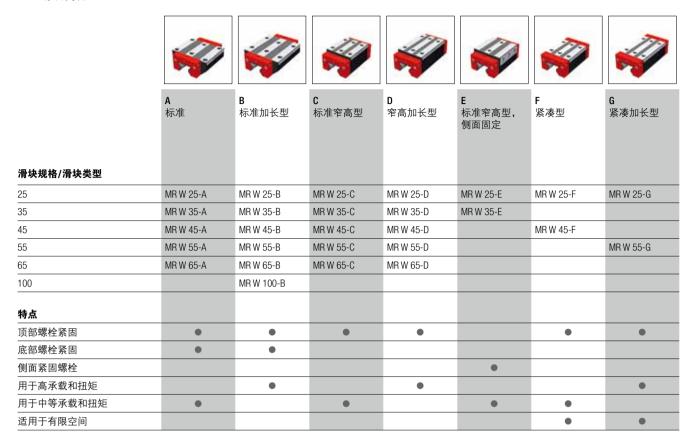
MR导轨订单格式	Page 59
MR滑块订单格式	Page 59

MR 导轨

MR 导轨简介

MR 导轨的可选选项 详见第2章

精度 直线度 基准面 镀层


□ 超高精密级 □ KC 标准 □ CN 无镀层 □ CN 无镀层

MR 导轨可选配件 详见第3.3章

堵头 盖板 装配工具

MR 滑块

MR 滑块简介

MR 滑块的可选选项

精度 预紧力 基准面 镀层

- **GO** 超高精密级 无镀层 **¼ V1** 低 R1 底部 CN 硬化镀铬 ■ ~ G1 高精密级 **水 v2** 中等 R2 顶部 CH CH

☆ G2 精密级 ▲V3 高

润滑接口

出厂润滑保护 △。LN 润滑油保护 **S10**▶□ 左侧中央 **S23** □ 右上侧 **S20** □ 右侧中央 ____LG 润滑脂保护

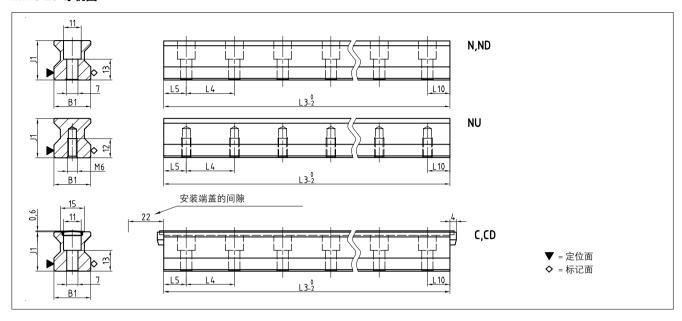
∑ LV 充分润滑

S42 口 右侧 S21 □ 顶部右侧 **S60** 中央

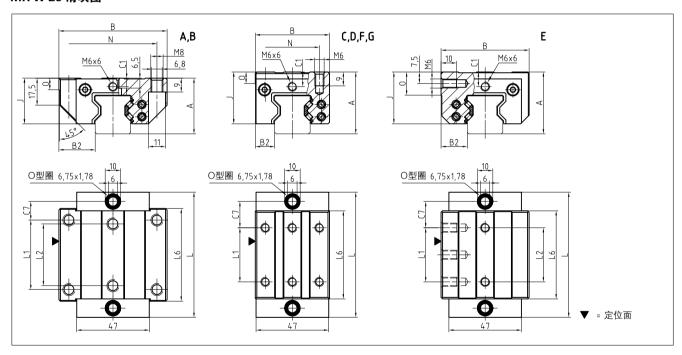
MR 滑块可选配件

辅助刮屑板 端面板

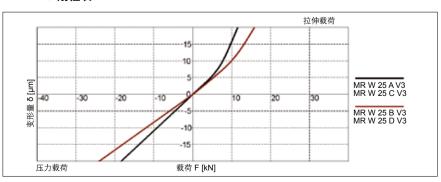
S22 □ 右下侧

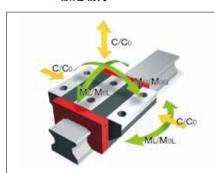

← G3 普通级

波纹罩 润滑油嘴 装配轨 润滑连接板


自润滑板

MR 25


MR S 25 导轨图


MR W 25 滑块图

MR W 25 刚性表

MR W 25 额定载荷

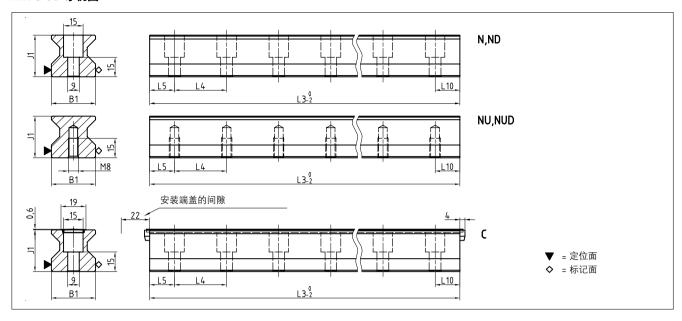
MR 25

MR S 25 尺寸

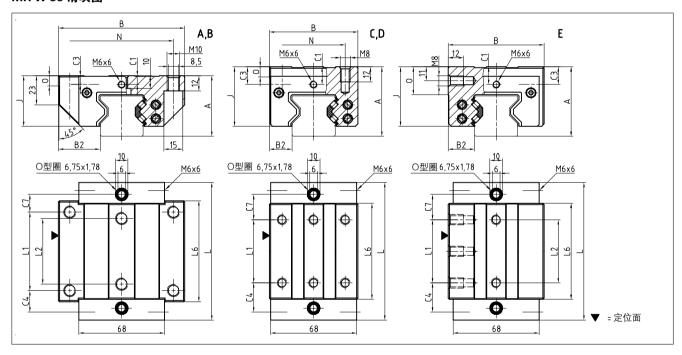
	MR S 25-N	MR S 25-ND	MR S 25-NU	MR S 25-C	MR S 25-CD	
B1: 导轨宽度	23	23	23	23	23	
J1: 导轨高度	24.5	24.5	24.5	24.5	24.5	
L3: 导轨最大长度	6000	1500	6000	3000	1500	
L4: 安装孔孔距	30	30	30	30	30	
L5/L10:第一个/最后一个安装孔距端头的距离	13.5	13.5	13.5	13.5	13.5	
Gew.: 导轨重量 (kg/m)	3.4	3.4	3.8	3.3	3.3	

MR S 25 的可选选项

MR W 25 尺寸和承载力

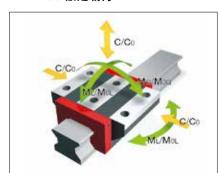

	MR W 25-A	MR W 25-B	MR W 25-C	MR W 25-D	MR W 25-E	MR W 25-F	MR W 25-G
 A: 系统高度	36	36	40	40	40	36	36
 B: 滑块宽度	70	70	48	48	57	48	48
B2:导轨基准面与滑块基准面之间的距离	23.5	23.5	12.5	12.5	17	12.5	12.5
 C1: 前端中心润滑孔的位置	5.5	5.5	9.5	9.5	9.5	5.5	5.5
	-	-	-	-	-	-	-
C4: 侧面润滑孔的位置	-	-	-	-	-	-	-
C7: 顶部润滑孔的位置	12	23.2	17	20.7	17	17	20.7
	29.5	29.5	33.5	33.5	33.5	29.5	29.5
L: 滑块长度	81	103.4	81	103.4	81	81	103.4
	45	45	35	50	35	35	50
 L2: 中间安装孔孔距	40	40	-	-	35	-	-
 L6: 钢体长度	60	79.4	57	79.4	57	57	79.4
N: 侧面安装孔间距	57	57	35	35	-	35	35
0: 基准面高度	7.5	7.5	7.5	7.5	15	7.5	7.5
承载力和重量							
	49800	70300	49800	70300	49800	49800	70300
C100: 动态承载力(Nm)	27700	39100	27700	39100	27700	27700	39100
MOQ: 静态径向翻转力矩(Nm)	733	1035	733	1035	733	733	1035
MOL: 静态轴向翻转力矩(Nm)	476	936	476	936	476	476	936
MQ: 动态径向翻转力矩(Nm)	408	576	408	576	408	408	576
ML: 动态轴向扭矩承载力(Nm)	265	521	265	521	265	265	521
Gew: 滑块重量(kg)	0.7	0.9	0.6	0.7	0.7	0.5	0.6

MR W 25 的可选选项



MR 35

MR S 35 导轨图


MR W 35 滑块图

MR W 35 刚性表

MR W 35 额定载荷

MR 35

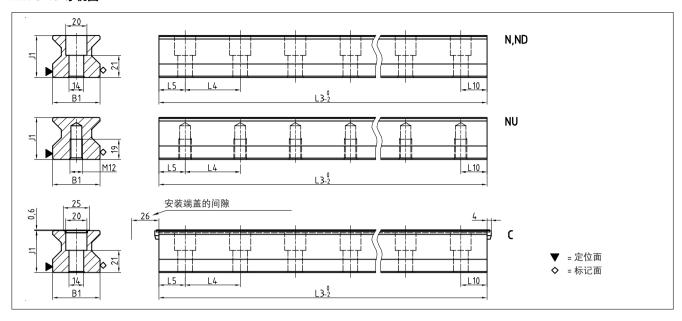
MR S 35 尺寸

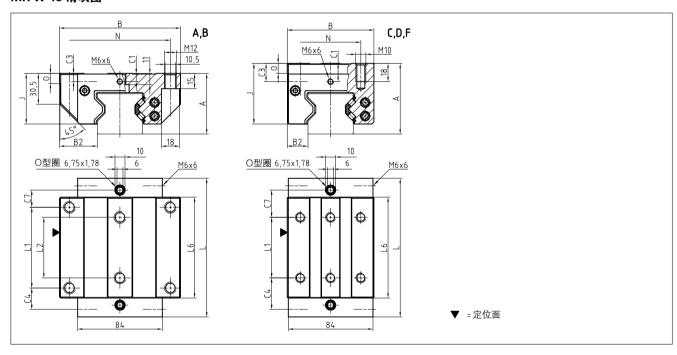
		MR S 35-N	MR S 35-ND	MR S 35-NU	MR S 35-NUD	MR S 35-C	
B1:	导轨宽度	34	34	34	34	34	
J1:	导轨高度	32	32	32	32	32	
L3:	导轨最大长度	6000	1500	6000	1500	6000	
L4:	安装孔孔距	40	40	40	40	40	
L5/L10):第一个/最后一个安装孔距端头的距离	18.5	18.5	18.5	18.5	18.5	
Gew.:	导轨重量 (kg/m)	6.5	6.5	7.1	7.1	6.3	

MRS 35 的可选选项

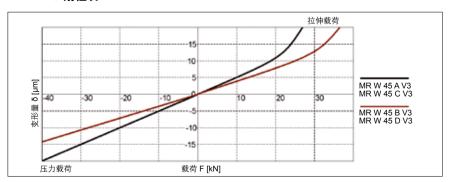
MR W 35 尺寸和承载力

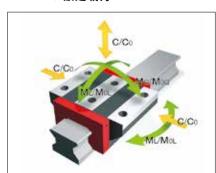
	MR W 35-A	MR W 35-B	MR W 35-C	MR W 35-D	MR W 35-E	
A: 系统高度	48	48	55	55	55	
B: 滑块宽度	100	100	70	70	76	
B2: 导轨基准面与滑块基准面之间的距离	33	33	18	18	21	
C1: 前端中心润滑孔的位置	7	7	14	14	14	
C3: 侧面润滑孔的位置	7	7	14	14	14	
C4: 侧面润滑孔的位置	17	30.5	23	25.5	23	
C7: 顶部润滑孔的位置	14	27.5	20	22.5	20	
J: 滑块高度	40	40	47	47	47	
L: 滑块长度	109	136	109	136	109	
L1: 外侧安装孔孔距	62	62	50	72	50	
L2: 中间安装孔孔距	52	52	-	-	50	
L6: 钢体长度	80	103	76	103	76	
N: 侧面安装孔间距	82	82	50	50	÷	
0: 基准面高度	8	8	8	8	22	
承载力和重量						
CO: 静态承载力 (Nm)	93400	128500	93400	128500	93400	
C100: 动态承载力(Nm)	52000	71500	52000	71500	52000	
M0Q: 静态径向翻转力矩(Nm)	2008	2762	2008	2762	2008	
MOL: 静态轴向翻转力矩(Nm)	1189	2214	1189	2214	1189	
MQ: 动态径向翻转力矩(Nm)	1118	1537	1118	1537	1118	
ML: 动态轴向扭矩承载力(Nm)	662	1232	662	1232	662	
Gew: 滑块重量(kg)	1.6	2.2	1.5	2.0	1.8	


MR W 35 的可选选项



MR 45


MR S 45 导轨图


MR W 45 滑块图

MR W 45 刚性表

MR W 45 额定载荷

MR 45

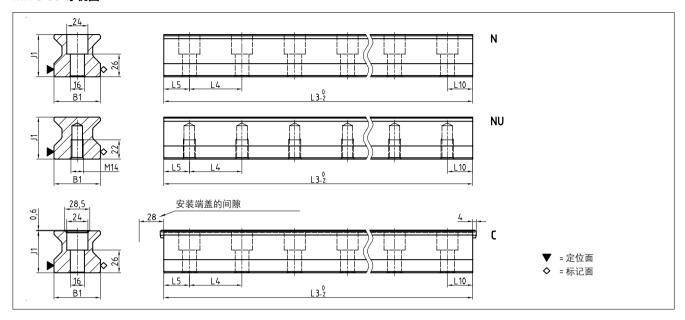
MR S 45 尺寸

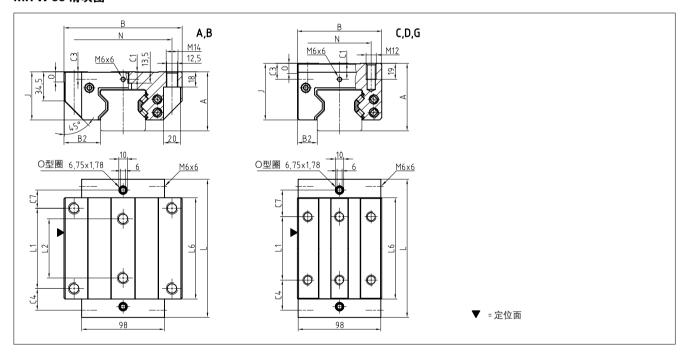
	MR S 45-N	MR S 45-ND	MR S 45-NU	MR S 45-C		
B1: 导轨宽度	45	45	45	45		
	40	40	40	40		
L3: 导轨最大长度	6000	1500	6000	6000		
 L4: 安装孔孔距	52.5	52.5	52.5	52.5		
L5/L10:第一个/最后一个安装孔距端头的距离	25	25	25	25		
Gew.: 导轨重量 (kg/m)	10.8	10.8	11.8	10.6		

MR S 45 的可选选项

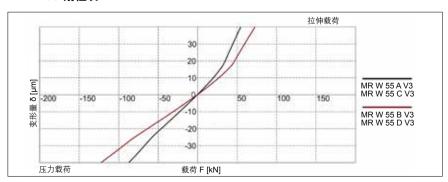
MR W 45 尺寸和承载力

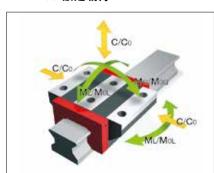
	MR W 45-A	MR W 45-B	MR W 45-C	MR W 45-D	MR W 45-F	
A: 系统高度	60	60	70	70	60	
B: 滑块宽度	120	120	86	86	86	
B2: 导轨基准面与滑块基准面之间的距离	37.5	37.5	20.5	20.5	20.5	
C1: 前端中心润滑孔的位置	8	8	18	18	8	
C3: 侧面润滑孔的位置	8	8	18	18	8	
C4: 侧面润滑孔的位置	21.25	38.75	31.25	38.75	31.25	
C7: 顶部润滑孔的位置	17	34.5	27	34.5	27	
J: 滑块高度	50	50	60	60	50	
L: 滑块长度	137.5	172.5	137.5	172.5	137.5	
L1: 外侧安装孔孔距	80	80	60	80	60	
L2: 中间安装孔孔距	60	60	-	-	÷	
L6: 钢体长度	100	135	100	135	100	
N: 侧面安装孔间距	100	100	60	60	60	
0: 基准面高度	10	10	10	10	10	
承载力和重量						
CO: 静态承载力 (Nm)	167500	229500	167500	229500	167500	
C100: 动态承载力(Nm)	93400	127800	93400	127800	93400	
MOQ: 静态径向翻转力矩(Nm)	4621	6333	4621	6333	4621	
MOL: 静态轴向翻转力矩(Nm)	2790	5161	2790	5161	2790	
MQ: 动态径向翻转力矩(Nm)	2577	3527	2577	3527	2577	
ML: 动态轴向扭矩承载力(Nm)	1556	2874	1556	2874	1556	
Gew.: 滑块重量(kg)	3.2	4.3	3.0	4.0	2.3	


MR W 45 的可选选项



MR 55


MR S 55 导轨图


MR W 55 滑块图

MR W 55 刚性表

MR W 55 额定载荷

MR 55

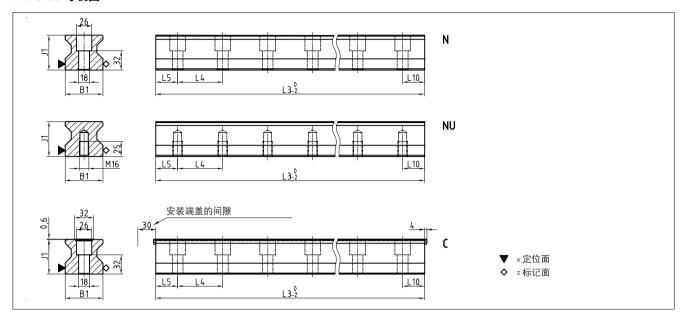
MR S 55 尺寸

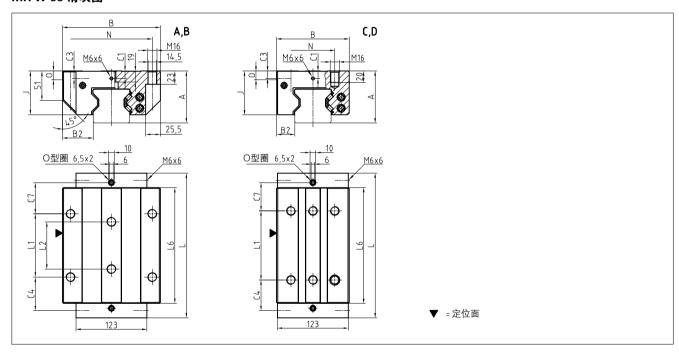
		MR S 55-N	MR S 55-NU	MR S 55-C		
B1:	导轨宽度	53	53	53		
J1:	导轨高度	48	48	48		
L3:	导轨最大长度	6000	6000	6000		
L4:	安装孔孔距	60	60	60		
L5/L1	D:第一个/最后一个安装孔距端头的距离	28.5	28.5	28.5		
Gew.:	导轨重量 (kg/m)	15.2	16.6	14.9		

MR S 55 的可选选项

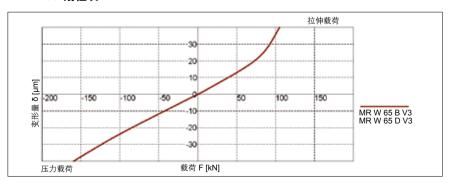
MR W 55 尺寸和承载力

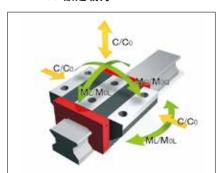
	MR W 55-A	MR W 55-B	MR W 55-C	MR W 55-D	MR W 55-G	
A: 系统高度	70	70	80	80	70	
B: 滑块宽度	140	140	100	100	100	
B2: 导轨基准面与滑块基准面之间的距离	43.5	43.5	23.5	23.5	23.5	
C1: 前端中心润滑孔的位置	9	9	19	19	9	
C3: 侧面润滑孔的位置	9	9	19	19	9	
C4: 侧面润滑孔的位置	25.75	46.75	35.75	46.75	46.75	
C7: 顶部润滑孔的位置	21.5	42.5	31.5	42.5	42.5	
J: 滑块高度	57	57	67	67	57	
L: 滑块长度	163.5	205.5	163.5	205.5	205.5	
L1: 外侧安装孔孔距	95	95	75	95	95	
L2: 中间安装孔孔距	70	70	-	-	-	
L6: 钢体长度	120	162	120	162	162	
N: 侧面安装孔间距	116	116	75	75	75	
0: 基准面高度	12	12	12	12	12	
承载力和重量						
CO: 静态承载力 (Nm)	237000	324000	237000	324000	324000	
C100: 动态承载力(Nm)	131900	180500	131900	180500	180500	
MOQ: 静态径向翻转力矩(Nm)	7771	10624	7771	10624	10624	
MOL: 静态轴向翻转力矩(Nm)	4738	8745	4738	8745	8745	
MQ: 动态径向翻转力矩(Nm)	4325	5919	4325	5919	5919	
ML: 动态轴向扭矩承载力(Nm)	2637	4872	2637	4872	4872	
Gew: 滑块重量(kg)	5.0	6.8	4.5	6.1	4.8	


MR W 55 的可选选项



MR 65


MR S 65 导轨图


MR W 65 滑块图

MR W 65 刚性表

MR W 65 额定载荷

MR 65

MR S 65 尺寸

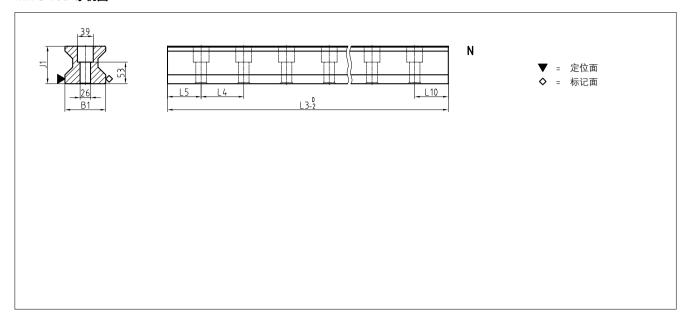
		MR S 65-N	MR S 65-NU	MR S 65-C		
B1:	导轨宽度	63	63	63		
J1:	导轨高度	58	58	58		
L3:	导轨最大长度	6000	6000	6000		
L4:	安装孔孔距	75	75	75		
L5/L10):第一个/最后一个安装孔距端头的距离	36	36	36		
Gew.:	导轨重量(kg/m)	22.8	24.5	22.5		

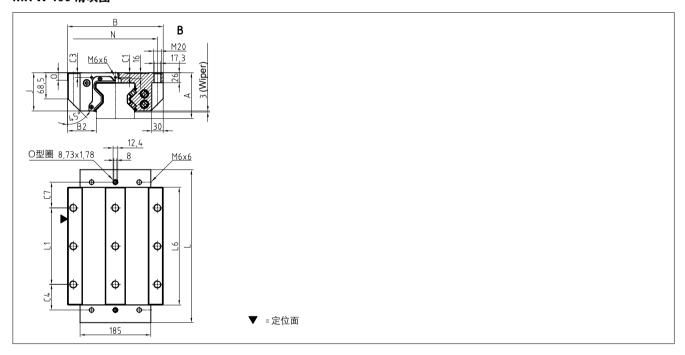
MR S 65 的可选选项

MR W 65 尺寸和承载力

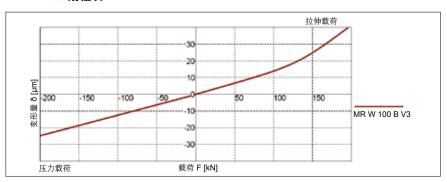


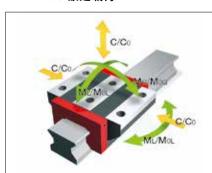
	MR W 65-A	MR W 65-B	MR W 65-C	MR W 65-D		
A: 系统高度	90	90	90	90		
B: 滑块宽度	170	170	126	126		
B2: 导轨基准面与滑块基准面之间的距离	53.5	53.5	31.5	31.5		
C1: 前端中心润滑孔的位置	13	13	13	13		
C3: 侧面润滑孔的位置	13	13	13	13		
C4: 侧面润滑孔的位置	31.75	58	51.75	53		
C7: 顶部润滑孔的位置	27.75	54	47.75	49		
J: 滑块高度	76	76	76	76		
L: 滑块长度	198.5	251	198.5	251		
L1: 外侧安装孔孔距	110	110	70	120		
L2: 中间安装孔孔距	82	82	-	-		
L6: 钢体长度	148.5	201	148.5	201		
N: 侧面安装孔间距	142	142	76	76		
0: 基准面高度	15	15	15	15		
承载力和重量						
CO: 静态承载力 (Nm)	419000	530000	419000	530000		
C100: 动态承载力(Nm)	232000	295000	232000	295000		
MOQ: 静态径向翻转力矩(Nm)	16446	20912	16446	20912		
MOL: 静态轴向翻转力矩(Nm)	10754	17930	10754	17930		
MQ: 动态径向翻转力矩(Nm)	9154	11640	9154	11640		
ML: 动态轴向扭矩承载力(Nm)	5954	9980	5954	9980		
Gew: 滑块重量(kg)	10.2	13.5	8.0	10.4		


MR W 65 的可选选项



MR 100


MR S 100 导轨图


MR W 100 滑块图

MR W 100 刚性表

MR W 100 额定载荷

MR 100

MR S 100 尺寸

	MR S 100-N			
B1: 导轨宽度	100			
	92			
L3: 导轨最大长度	3000			
L4: 安装孔孔距	105			
L5/L10:第一个/最后一个安装孔距端头的距离	51			
Gew.: 导轨重量 (kg/m)	55.3			

MR S 100 的可选选项

MR W 100 尺寸和承载力

	MR W 100-B			
	120			
B: 滑块宽度	250			
B2: 导轨基准面与滑块基准面之间的距离	75			
	12.5			
C3: 侧面润滑孔的位置	12.5			
C4: 侧面润滑孔的位置	67			
	67			
	100			
 L: 滑块长度	400			
	200			
	-			
 L6: 钢体长度	308			
N: 侧面安装孔间距	220			
0: 基准面高度	20			
承载力和重量				
CO: 静态承载力 (Nm)	1470000			
C100: 动态承载力(Nm)	605000			
M0Q: 静态径向翻转力矩(Nm)	91471			
MOL: 静态轴向翻转力矩(Nm)	39432			
MQ: 动态径向翻转力矩(Nm)	37646			
ML: 动态轴向扭矩承载力(Nm)	16229			
Gew: 滑块重量(kg)	40.0			

MR W 100 的可选选项

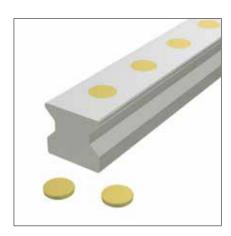
MR导轨配件一览表

配件	MR S 25	MR S 35	MR S 45	MR S 55	MR S 65	MR S 100	
堵头:							
塑料堵头	MRK 25	MRK 35	MRK 45	MRK 55	MRK 65	-	
铜堵头	MRS 25	MRS 35	MRS 45	MRS 55	MRS 65	MRS 100	
钢堵头	MRZ 25	MRZ 35	MRZ 45	MRZ 55	MRZ 65	MRZ 100	
盖板(备件)	MAC 25	MAC 35	MAC 45	MAC 55	MAC 65	-	
盖板封盖(备件)	BSC 25-MAC	BSC 35-MAC	BSC 45-MAC	BSC 55-MAC	BSC 65-MAC		
盖板端盖(备件)	EST 25-MAC	EST 35-MAC	EST 45-MAC	EST 55-MAC	EST 65-MAC	-	
表配工具:							
安装钢堵头的工具	MWH 25	MWH 35	MWH 45	MWH 55	MWH 65	MWH 100	
用于MWH的液压缸	MZH	MZH	MZH	MZH	MZH	MZH	
安装盖板的工具	MWC 25	MWC 35	MWC 45	MWC 55	MWC 65	-	

MR滑块配件一览表

配件	MR W 25	MR W 35	MR W 45	MR W 55	MR W 65	MR W 100	
辅助刮屑板:							
NBR材料辅助刮屑板	ZCN 25	ZCN 35	ZCN 45	ZCN 55	ZCN 65	ZCN 100	
Viton材料 辅助刮屑板	ZCV 25	ZCV 35	ZCV 45	ZCV 55	ZCV 65	ZCV 100	
金属刮屑板	ASM 25	ASM 35	ASM 45	ASM 55	ASM 65	ASM 100	
波纹罩:							
波纹罩	FBM 25	FBM 35	FBM 45	FBM 55	FBM 65		
波纹罩连接板(备件)	ZPL 25	ZPL 35	ZPL 45	ZPL 55	ZPL 65		
波纹罩端面板(备件)	EPL 25	EPL 35	EPL 45	EPL 55	EPL 65	-	
装配轨:							
装配轨	MRM 25	MRM 35	MRM 45	MRM 55	MRM 65	MRM 100	
自润滑板:							
自润滑板	SPL 25-MR	SPL 35-MR	SPL 45-MR	SPL 55-MR	SPL 65-MR	-	
端面板:							
端面板(备件)	STP 25-EK	STP 35-EK	STP 45-EK	STP 55-EK	STP 65-EK	STP 100-EK	
脂润滑油嘴:							
直润滑油嘴	SN 6	SN 6	SN 6	SN 6	SN 6	SN 6	
45° 润滑油嘴	SN 6-45	SN 6-45	SN 6-45	SN 6-45	SN 6-45	SN 6-45	
90° 润滑油嘴	SN 6-90	SN 6-90	SN 6-90	SN 6-90	SN 6-90	SN 6-90	
M6漏斗式润滑油嘴	SN 6-T	SN 6-T	SN 6-T	SN 6-T	SN 6-T	SN 6-T	
用于SN 3-T和SN 6-T的注油枪	SFP-T3	SFP-T3	SFP-T3	SFP-T3	SFP-T3	SFP-T3	
油润滑用变径接头:							
M8外圆变径接头	SA 6-RD-M8	SA 6-RD-M8	SA 6-RD-M8	SA 6-RD-M8	SA 6-RD-M8	SA 6-RD-M8	
M8外六角接头	-	SA 6-6KT-M8					
G1/8 外六角接头	-	SA 6-6KT-G1/8					
摆角式接头,外接油管直径d=4mm	SV 6-D4	SV 6-D4	SV 6-D4	SV 6-D4	SV 6-D4	SV 6-D4	
M6摆角式接头	SV 6-M6	SV 6-M6	SV 6-M6	SV 6-M6	SV 6-M6	SV 6-M6	
加长型M6摆角式接头	SV 6-M6-L	SV 6-M6-L	SV 6-M6-L	SV 6-M6-L	SV 6-M6-L	SV 6-M6-L	
M8摆角式接头	SV 6-M8	SV 6-M8	SV 6-M8	SV 6-M8	SV 6-M8	SV 6-M8	
加长型M8摆角式接头	SV 6-M8-L	SV 6-M8-L	SV 6-M8-L	SV 6-M8-L	SV 6-M8-L	SV 6-M8-L	

MR导轨配件详述


塑料堵头

MRK塑料堵头是一种低成本的方案以封堵导轨安装孔,能使用简单的工具装配到导轨上。推荐用于导轨有防护或污染程度较低的环境,例如,吊装设备。

包装数量: 25件/袋

订货编号: MRK xx

xx = 规格, 例如: 6 × MRK 65

铜堵头

铜堵头用于受污染物或外接温度影响的场合,以及有废屑或对导轨表面要求较高的 应用。

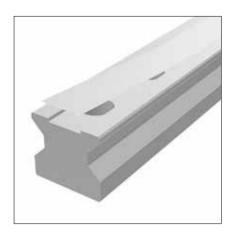
推荐使用MWH装配工具

订货编号: MRS xx

xx=规格, 例如: 48 x MRK 65

钢堵头

两件式钢堵头由不锈钢材料制成,适用于对导轨表面有非常高要求的应用,以及有很高的承载要求或暴露在金属废屑的场合。它结合了简便、精确安装以及机械稳定性高的优点。


功能

将锁紧环放置于导轨安装孔的螺栓顶上,当锥形堵头轻轻地被压入,锁紧环膨胀, 在堵头和导轨安装孔之间形成摩擦连接。

安装时,使堵头和导轨表面齐平以保证刮屑板达到最佳使用效果并延长使用使用寿命。

订货编号: MRZ xx

xx=规格,例如: 48×MRZ 65

MR异轨配件详述

盖板(备件)

MAC盖板将防护功能、安装简单和外表美观组合在一起。导轨盖板用不锈弹簧钢制成,适合受污染物或外界温度影响的场合。

MAC盖板具有以下优点:

- 由于紧固在特制的凹槽里,整个长度上有可靠的固定
- 有锁紧端盖(ESTxx-MAC)在导轨末端加以固定
- 材料结实耐牢
- 导轨表面特制的盖板槽能防止盖板脱落
- 拆装方便,可多次反复使用
- 通过在凹槽中的导轨孔上安装导轨盖板,对滑块的刮屑板进行保护
- 单根盖板长度可达30m

如果要订带盖板的导轨, 盖板也须包括在订单中

订货编码: MAC xx-yy

xx=规格, yy=导轨长度 (mm) 例如: 1×MAC 65-4320

盖板的端盖(备件)

EST端盖用于MAC盖板的收口。塑料端盖在导轨两端嵌入盖板下面的间隙里,以防止盖板翘起或被盖板边棱划伤。

订货编号: EST xx-MAC

xx=规格,例如:2×EST 65-MAC

导轨盖板保护端盖 (选配件)

当机械载荷较大时,BSC 保护端盖可用于固定和保护导轨盖板。端盖在导轨末端突出,直角固定且边棱无毛刺,用螺栓紧固在导轨端面。

保护端盖用于振动较大,加工过程中导轨暴露在金属废屑的环境,导轨长度小于600mm,或者垂直安装中EST端盖有脱落风险的应用。

端盖覆盖导轨盖板末端,也起到防止盖板末端尖角划伤的作用。

订货编号: BSC xx-MAC

xx=规格,例如:2xBSC65-MAC

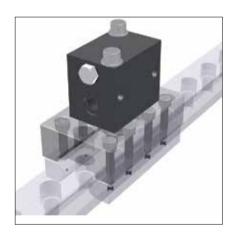
MR导轨配件详述

盖板装配工具

MWC装配工具是用于简化装配MAC盖板。同时它也保证了盖板完全嵌入凹槽中而 没有任何间隙。

订货编号: MWC xx

xx=规格, 例如: 1 x MWC 35



钢堵头安装工具

液压安装工具MWH用于安装MRZ两件式钢堵头,由不同尺寸的底座和活塞销组 成。同时,还需要一个液压缸配合使用。装配时,将底座和活塞销用螺栓紧固到液 压缸上。

订货编号: MWH xx

xx=规格,例如:1×MWH

用于MWH的液压缸

MZH液压缸用于产生活塞销所需的液压力。液压油路的接口是1/4"的螺纹连接。此 液压缸适用于所有尺寸的MWH液压安装工具并且需要单独订购。

订货编号: MZH 例如: 1×MZH

MR滑块配件详述

辅助刮屑板

ZCN辅助刮屑板为污染严重的工作环境下的滑块提供了附加保护。装卸灵活,刮屑板可以直接从导轨上卸下而无需先把滑块取下。ZCN 刮屑板还能与ABM金属刮屑板同时使用。

订货编号: ZCN xx

xx=规格,例如:2×ZCN 65

Viton橡胶辅助刮屑板

ZCV辅助刮屑板同ZCN一样,也是用于在恶劣环境下保护滑块。由Viton®(氟橡胶)制成,能用于有侵蚀性的冷却液。

它也能从导轨上直接装卸,反复使用而无需先卸下滑块。ZCV刮屑板也能与ABM金属刮屑板同时使用。

订货编号: ZCV xx

xx=规格,例如:2×ZCV65

金属刮屑板

ASM金属刮屑板由不锈钢制成,用于保护滑块和辅助刮屑板的密封唇口,防止热金属屑的损害。因为刮屑板和导轨之间间隙尺寸很小,能防止较大的、松散的污染物进入滑块。如果使用AMS系统导轨上则需要安装特殊的连接板。

金属刮屑板能与ZCN/ZCV辅助刮屑板配合使用,效果更加理想。

订货编号: ASM xx

xx=规格,例如: 1 x ASM 65

MR滑块配件详述

波纹罩

订购MONORAIL MR系列中的MR25到MR65规格可提供标准波纹罩。波纹罩可沿导轨全长移动,进一步起到防尘和防冷却液的作用。波纹罩为化纤织物材料,两面有塑性涂层。波纹罩的外部轮廓尺寸在导轨径向上与滑块的面板相似。滑块在导轨上移动经过空间的外部轮廓尺寸不会因为使用波纹罩而增加。

波纹罩的安装很简便,需要通过ZPL中间连接板固定并紧固到滑块的端面板上。导轨末端装有末端连接板EPL。波纹罩用铆钉与中间连接板和端面板相连接。

如果感应淬火导轨需要后加装波纹罩,必须在导轨末端端面钻孔以安装EPL末端连 接板。

整套订购时,随货会提供所需的中间连接板、末端连接板、螺钉和铆钉等。

订货编号: FBM xx-yy

xx=规格, yy=折叠数量 例如: 1×FBM 65-137


波纹罩中间连接板 (备件)

连接板用于将波纹罩固定在滑块上,包含在波纹罩的整套订货内。连接板是黑色的氧化铝板。如果规格是MR25,连接板还可用于侧面润滑接口。

连接板外部轮廓与滑块端面板、波纹罩和末端连接板相同。中央紧固螺栓包括在供 货范围内。

订货编号: ZPL xx

xx=规格, 例如: 2 x ZPL 65

波纹置末端连接板(备件)

黑色的氧化铝板,用于将波纹罩固定在导轨的末端,它包含在波纹罩的整套订货内。如果末端连接板是后来加装的,导轨上要加工相应的连接孔。因此,如果要在旧导轨上后加装使用,只能用于感应淬火的导轨。连接板的轮廓与滑块端面板、波纹罩和中间连接板的轮廓相同。紧固螺栓随连接板发货。

订货编号: EPL xx

xx=规格,例如:2×EPL 65

MR滑块配件详述

装配轨

在安装MONORAIL导轨时,如果要先把滑块从导轨上卸下来然后再装上,必须使用塑料装配轨。

为了保护滚柱,建议在此过程中不要将滑块从装配轨上取下来。如果需要,可以用滑块中间的螺孔把滑块固定在装配轨的两个孔上。

订货编号: MRM xx

xx=规格, 例如: 1 x MRM 65

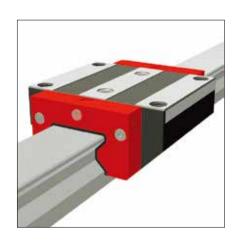
自润滑板

SPL自润滑板用于润滑间隔较长的应用。它内置有润滑剂容器,可以自动地为运行部件提供长时间的均匀润滑。

自润滑板一般用于干燥、清洁的环境,如吊装设备或机床的辅助轴。

自润滑板的优点是:

- 无论导轨的安装位置如何,都能确保润滑剂的有效供给
- 润滑周期长,可达5000km或12个月
- 注油孔是螺纹孔
- 润滑和配件成本低
- 所耗润滑油少,减少对环境的污染
- 润滑油直接到达导轨表面,因此刮屑板使用寿命加长


在未达到最大行程之前无需再次加油。自润滑板必须成套使用,才能提供对滑块有效的润滑。

自润滑板与滑块端面板的外形尺寸相同,也可以后加装使用。

如果导轨可能接触到进入的污染物,必须使用ZBN-U/ZBV-U辅助刮屑板。

订货编号: SPL xx-MR

xx=规格, 例如: 2×SPL65-MR

端面板(备件)

红色的端面板有两个基本作用:

- 供给润滑剂
- 为MONORAIL滑块提供密封保护

润滑剂可以通过若干内置的润滑口进入滑块。端面板内的油路直接将润滑油分到滚柱上。

内置的双唇口刮屑板在滑块末端起到密封保护的作用,以防止灰尘进入滑块以及润滑剂的损耗。因为刮屑板属于易耗品,因此应定期检查端面板,如有损坏要及时进行更换。

订货编号: STP xx-EK

xx=规格,例如: 1×STP 65-EK

3.4 订货编号

所有的导轨和滑块应根据以下订货编号进行订货。

2.1章和3.3分别描述了配件的订货规则。

不同的导轨和滑块都有各自的订货编号。

所有的导轨组件都是未装配,按标准件单独供货的。

如果需要,SCHNEEBERGER也提供装配好的导轨、滑块和配件作为整套系统。

具体请参看第2.4章的订货指导。

MR导轨的订货编号

	2x	MR S	35	-N	-G1	-KC	-R1	-918	-19	-19	-CN
数量											
导轨											
尺寸											
导轨类型											
精度 精度											
直线度											
基准面											
始端安装孔中心到最近端头距离L5											
末端安装孔中心到最近端头距离L10											
镀层											

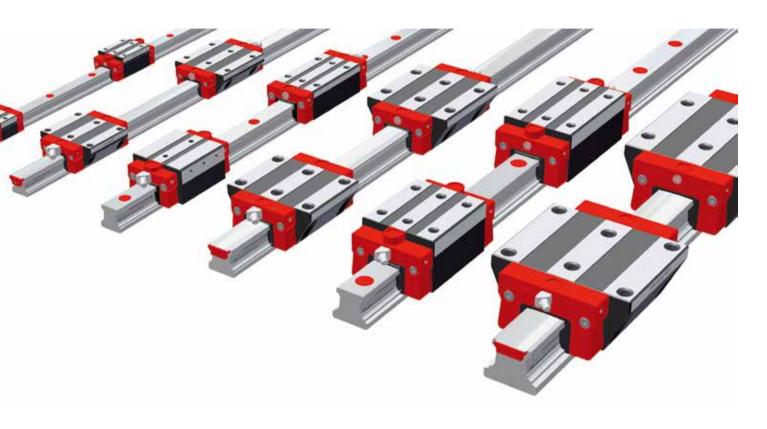
NB

第3.1章到3.3章介绍了所有的型号、具体规格、选项和配件。

第2章描述了所有的选项。

如果可能, L3尺寸最好是标准长度。

这是使用第3.2章中的等式计算得出的: L3=n×L4+L5+L10≤L3max.


MR滑块的订货编号

	4x	MR W	35	-A	-G1	-V3	-R1	-CN	-S10	-LN
数量										
滑块										
尺寸										
滑块类型										
精度										
基准面										
镀层										
润滑接口										
润滑的交货条件										

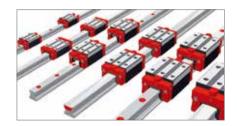
NB

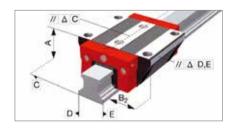
第3.1到3.3章介绍了所有的型号、具体规格、选项和配件。 第2章中描述了所有的选项。

SCHNEEBERGER LINEAR TECHNOLOGY

良好的动态性能和经济性是MONORAIL滚珠直线导轨的突出特点。导轨采用新型优 化设计,减少构件的数量,使滑块运行更加平稳并具有跳动小、摩擦小、滑移速度 快的优点。导轨采用梯形结构形式,增强了系统刚性,并降低了维护费用。滑块采 用全方位的密封设计,寿命更长,可靠性更高。滚珠导轨的结构设计牢固,能在很 多不同的领域使用。BM滚珠直线导轨是对MONORAIL滚柱直线导轨的理想补充。

MONORAIL BM 系统的特点





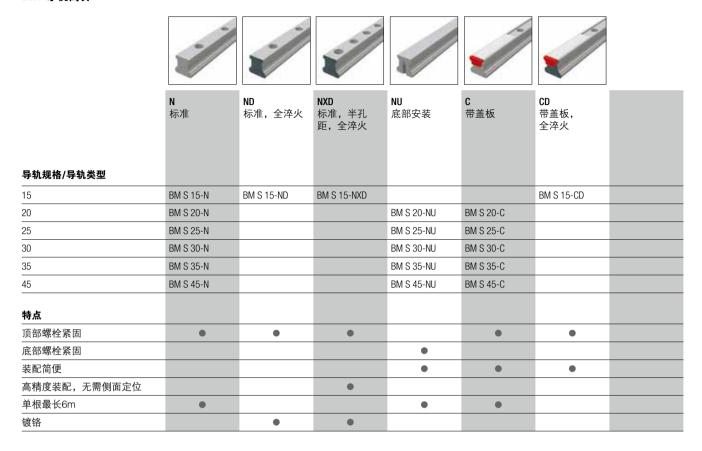
BM导轨简介	Page 64
BM滑块简介	Page 65

4.2 技术参数和选项

BM 15	Page 66
BM 20	Page 68
BM 25	Page 70
BM 30	Page 72
BM 35	Page 74
BM 45	Page 76

4.3 MONORAIL BM 配件

配件一览表	Page 78
BM导轨配件详述	Page 79
BM滑块配件详述	Page 81


4.4 订单格式

BM导轨订单格式	Page 84
BM滑块订单格式	Page 84

BM 导轨

BM 导轨简介

BM 导轨的可选选项 详见第2章

精度

---- GO 超高精密级

■ ○ G1 高精密级

□ へ G2 精密级

← 63 普通级

基准面

R1 底部

R2 顶部

镀层

─<mark>─ CN</mark> 无镀层

CH 硬化镀铬

BM 导轨可选配件

堵头

盖板

直线度

KC 标准

装配工具

BM 滑块

BM 滑块简介

D

	标准	标准加长型	标准窄高型	窄高加长型	标准窄高型, 侧面固定	紧凑型	紧凑加长型
					网面回足		
滑块规格/滑块类型							
15	BM W 15-A		BM W 15-C			BM W 15-F	
20	BM W 20-A	BM W 20-B	BM W 20-C	BM W 20-D			
25	BM W 25-A	BM W 25-B	BM W 25-C	BM W 25-D	BM W 25-E	BM W 25-F	BM W 25-G
30	BM W 30-A	BM W 30-B	BM W 30-C	BM W 30-D	BM W 30-E	BM W 30-F	BM W 30-G
35	BM W 35-A	BM W 35-B	BM W 35-C	BM W 35-D	BM W 35-E	BM W 35-F	BM W 35-G
45	BM W 45-A	BM W 45-B	BM W 45-C	BM W 45-D		BM W 45-F	BM W 45-G
特点							
顶部螺栓紧固	•	•	•	•		•	•
 底部螺栓紧固	•	•					
侧面螺栓紧固					•		
用于高承载和扭矩		•		•			•
用于中等承载和扭矩	•		•		•	•	
用于有限空间						•	•

BM 滑块的可选选项

精度

---- GO 超高精密级

:∼G1 高精密级

<mark>├──</mark>G2 精密级

<mark>← G3</mark> 普通级

预紧力

№ 较低

√√ ∨1 低

△ V2 中等

S13 二 左上侧

S23 □ 右上侧

S42 🗖 右侧

▲ V3 高

基准面

R1 底部

R2 顶部

镀层

____ CN 无镀层

CH 硬化镀铬

润滑接口

S10 □ 左侧中央

S20 □ 右侧中央 **S11 €** 顶部左侧

S21 □ 顶部右侧

S12 □ 左下侧

S22 □ 右下侧

出厂润滑保护

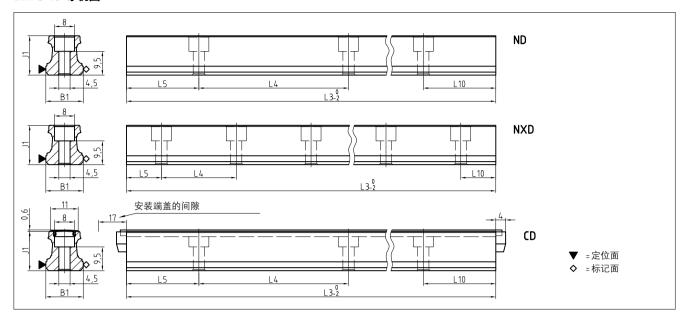
△。LN 润滑油保护

LG 润滑脂保护

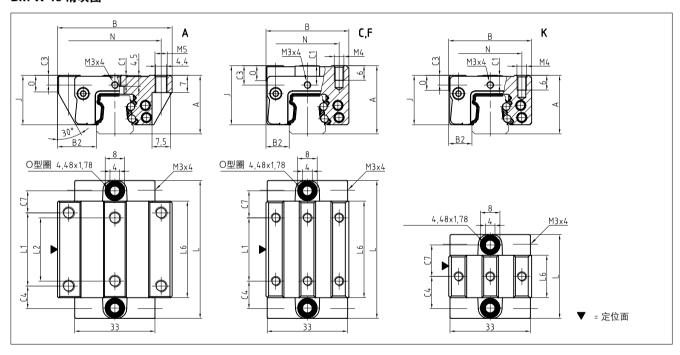
企成 充分润滑

BM 滑块可选配件

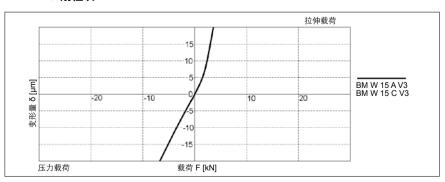
辅助刮屑板 端面板

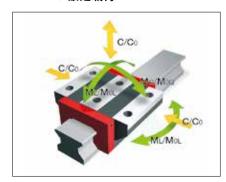

波纹罩 润滑油嘴

装配轨 润滑连接板


自润滑板

BM 15


BM S 15 导轨图


BM W 15 滑块图

BM W 15 刚性表

BM W 15 额定载荷

BM 15

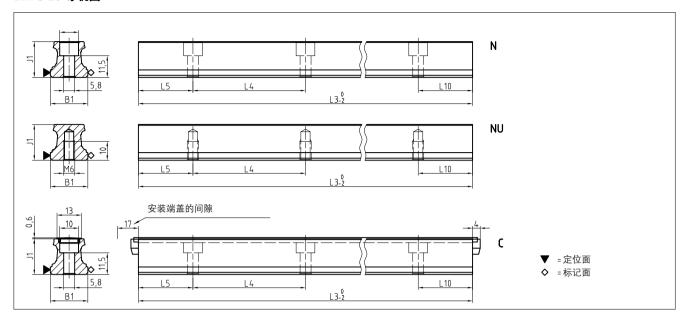
BM S 15 尺寸

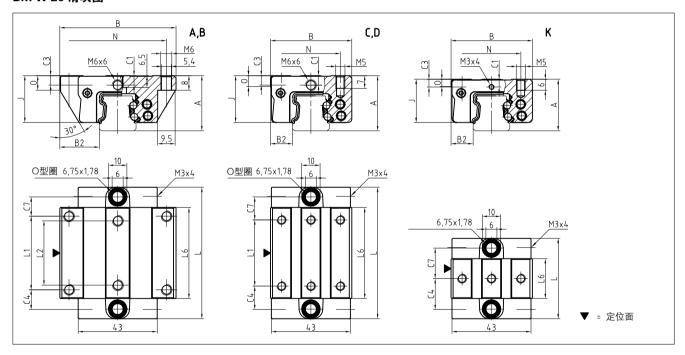
		BM S 15-ND	BM S 15-NXD	BM S 15-CD		
B1:	导轨宽度	15	15	15		
J1:	导轨高度	15.7	15.7	15.7		
L3:	导轨最大长度	1500	1500	1500		
L4:	安装孔孔距	60	30	60		
L5/L1	D:第一个/最后一个安装孔距端头的距离	28.5	13.5	28.5		
Gew.:	导轨重量 (kg/m)	1.4	1.4	1.3		

BM S 15 的可选选项

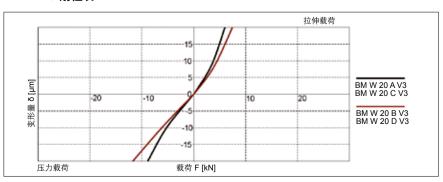
BM W 15 尺寸和承载力

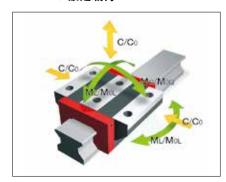
	BM W 15-A	BM W 15-C	BM W 15-F	BM W 15-K		
A: 系统高度	24	28	24	24		
B: 滑块宽度	47	34	34	34		
B2: 导轨基准面与滑块基准面之间的距离	16	9.5	9.5	9.5		
C1: 前端中心润滑孔的位置	4	8	4	4		
C3: 侧面润滑孔的位置	4	8	4	4		
C4: 侧面润滑孔的位置	9.3	11.3	11.3	14.8		
C7: 顶部润滑孔的位置	9.05	11.05	11.05	14.55		
J: 滑块高度	20.2	24.2	20.2	20.2		
L: 滑块长度	56.6	56.6	56.6	37.6		
L1: 外侧安装孔孔距	30	26	26	-		
L2: 中间安装孔孔距	26	-	-	-		
L6: 钢体长度	39.6	39.6	39.6	20.6		
N: 侧面安装孔间距	38	26	26	26		
0: 基准面高度	7	6	6	6		
承载力和重量						
CO: 静态承载力 (Nm)	19600	19600	19600	8500		
C100: 动态承载力(Nm)	9000	9000	9000	5200		
MOQ: 静态径向翻转力矩(Nm)	181	181	181	78		
MOL: 静态轴向翻转力矩(Nm)	146	146	146	30		
MQ: 动态径向翻转力矩(Nm)	83	83	83	48		
ML: 动态轴向扭矩承载力(Nm)	67	67	67	18		
Gew: 滑块重量(kg)	0.2	0.3	0.2	0.2		


BM W 15 的可选选项



BM 20


BM S 20 导轨图


BM W 20 滑块图

BM W 20 刚性表

BM W 20 额定载荷

BM 20

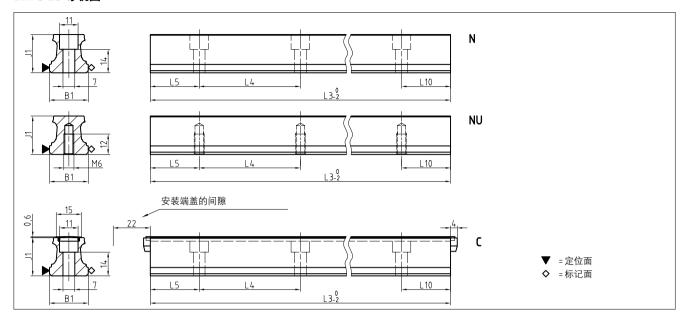
BM S 20 尺寸

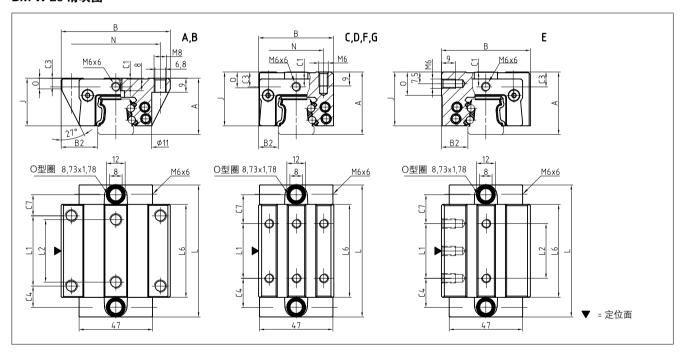
		BM S 20-N	BM S 20-NU	BM S 20-C		
B1:	导轨宽度	20	20	20		
J1:	导轨高度	19	19	19		
L3:	导轨最大长度	3000	3000	3000		
L4:	安装孔孔距	60	60	60		
L5/L1	D:第一个/最后一个安装孔距端头的距离	28.5	28.5	28.5		
Gew.:	导轨重量 (kg/m)	2.2	2.3	2.1		

BM S 20 的可选选项

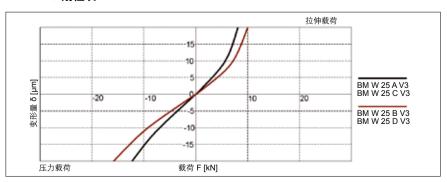
BM W 20 尺寸和承载力

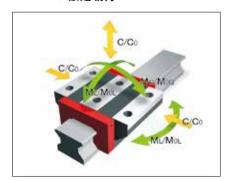
	BM W 20-A	BM W 20-B	BM W 20-C	BM W 20-D	BM W 20-K	
A: 系统高度	30	30	30	30	28	
B: 滑块宽度	63	63	44	44	44	
B2: 导轨基准面与滑块基准面之间的距离	21.5	21.5	12	12	12	
C1: 前端中心润滑孔的位置	5.2	5.2	5.2	5.2	4.2	
C3: 侧面润滑孔的位置	5.2	5.2	5.2	5.2	4.2	
C4: 侧面润滑孔的位置	10.75	18.75	12.75	13.75	18.85	
C7: 顶部润滑孔的位置	10.25	18.25	12.25	13.25	18.35	
J: 滑块高度	25.5	25.5	25.5	25.5	23.5	
L: 滑块长度	71.5	87.5	71.5	87.5	47.7	
 L1: 外侧安装孔孔距	40	40	36	50	-	
L2: 中间安装孔孔距	35	35	-	-	-	
L6: 钢体长度	49.5	65.5	49.5	65.5	25.7	
N: 侧面安装孔间距	53	53	32	32	32	
0: 基准面高度	8.5	8.5	6.5	6.5	4	
承载力和重量						
CO: 静态承载力 (Nm)	31400	41100	31400	41100	13100	
C100: 动态承载力(Nm)	14400	17400	14400	17400	8400	
M0Q: 静态径向翻转力矩(Nm)	373	490	373	490	150	
MOL: 静态轴向翻转力矩(Nm)	292	495	292	495	58	
MQ: 动态径向翻转力矩(Nm)	171	206	171	206	99	
ML: 动态轴向扭矩承载力(Nm)	134	208	134	208	37	
Gew: 滑块重量(kg)	0.5	0.6	0.4	0.5	0.3	


BM W 20 的可选选项



BM 25


BM S 25 导轨图


BM W 25 滑块图

BM W 25 刚性表

BM W 25 额定载荷

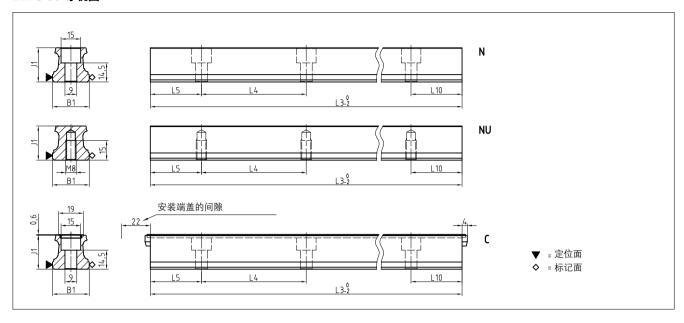
BM 25

BM S 25 尺寸

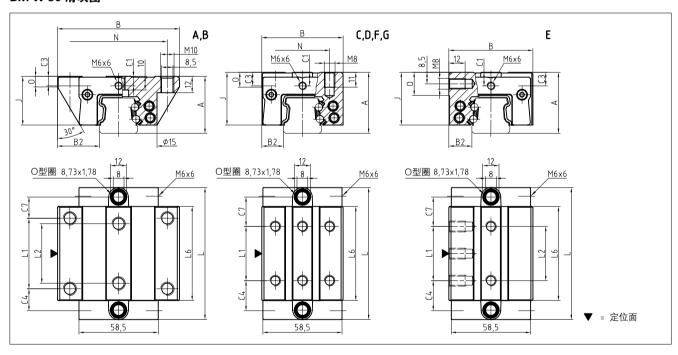
		BM S 25-N	BM S 25-NU	BM S 25-C		
B1:	导轨宽度	23	23	23		
J1:	导轨高度	22.7	22.7	22.7		
L3:	导轨最大长度	6000	6000	3000		
L4:	安装孔孔距	60	60	60		
L5/L1	D:第一个/最后一个安装孔距端头的距离	28.5	28.5	28.5		
Gew.:	导轨重量(kg/m)	3.0	3.1	2.8		

BM S 25 的可选选项

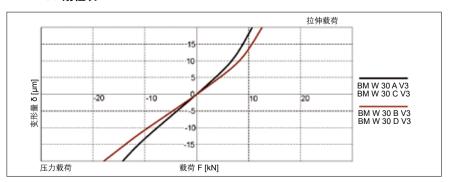
BM W 25 尺寸和承载力

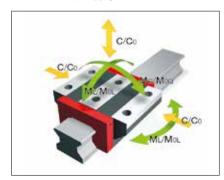

	BM W 25-A	BM W 25-B	BM W 25-C	BM W 25-D	BM W 25-E	BM W 25-F	BM W 25-G
 A: 系统高度	36	36	40	40	40	36	36
B: 滑块宽度	70	70	48	48	57	48	48
B2: 导轨基准面与滑块基准面之间的距离	23.5	23.5	12.5	12.5	17	12.5	12.5
	5.5	5.5	9.5	9.5	9.5	5.5	5.5
C3: 侧面润滑孔的位置	5.5	5.5	9.5	9.5	9.5	5.5	5.5
C4: 侧面润滑孔的位置	13.75	23.25	18.75	20.75	18.75	18.75	20.75
	13.5	23	18.5	20.5	18.5	18.5	20.5
」: 滑块高度	30.5	30.5	34.5	34.5	34.5	30.5	30.5
L: 滑块长度	84.5	103.5	84.5	103.5	84.5	84.5	103.5
 L1: 外侧安装孔孔距	45	45	35	50	35	35	50
 L2: 中间安装孔孔距	40	40	-	-	35	-	-
 L6: 钢体长度	59.5	78.5	59.5	78.5	59.5	59.5	78.5
	57	57	35	35	-	35	35
0: 基准面高度	7	7	10	10	15	10	10
承载力和重量							
CO: 静态承载力 (Nm)	46100	60300	46100	60300	46100	46100	60300
C100: 动态承载力(Nm)	21100	25500	21100	25500	21100	21100	25500
M0Q: 静态径向翻转力矩(Nm)	631	825	631	825	631	631	825
MOL: 静态轴向翻转力矩(Nm)	513	863	513	863	513	513	863
MQ: 动态径向翻转力矩(Nm)	289	349	289	349	289	289	349
ML: 动态轴向扭矩承载力(Nm)	235	365	235	365	235	235	365
Gew: 滑块重量(kg)	0.7	0.9	0.6	0.8	0.7	0.6	0.7

BM W 25 的可选选项



BM 30


BM S 30 导轨图


BM W 30 滑块图

BM W 30 刚性表

BM W 30 额定载荷

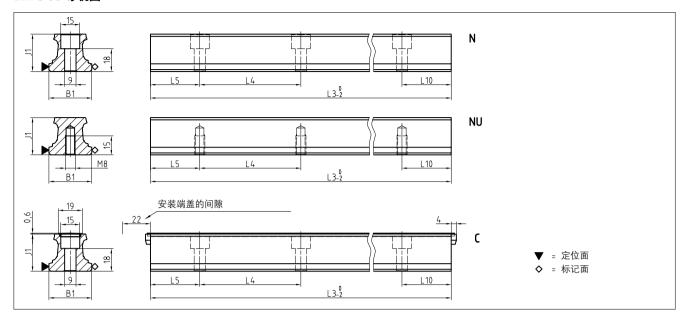
BM 30

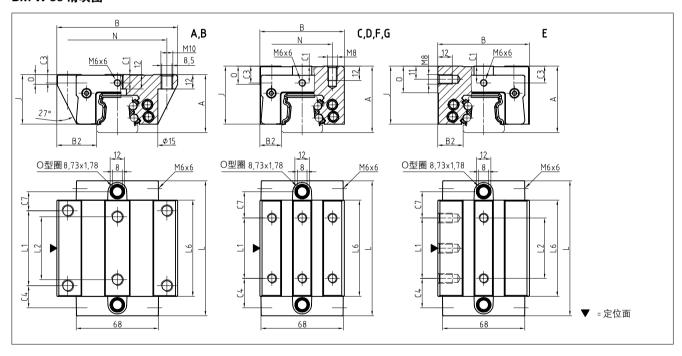
BM S 30 尺寸

		BM S 30-N	BM S 30-NU	BM S 30-C		
B1:	导轨宽度	28	28	28		
J1:	导轨高度	26	26	26		
L3:	导轨最大长度	6000	6000	6000		
L4:	安装孔孔距	80	80	80		
L5/L1	D:第一个/最后一个安装孔距端头的距离	38.5	38.5	38.5		
Gew.:	导轨重量 (kg/m)	4.3	4.5	4.1		

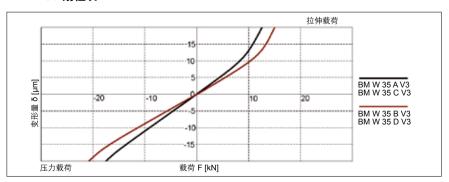
BM S 30 的可选选项

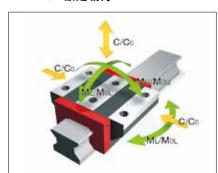
BM W 30 尺寸和承载力


BM W 30 的可选选项



BM 35


BM S 35 导轨图


BM W 35 滑块图

BM W 35 刚性表

BM W 35 额定载荷

BM 35

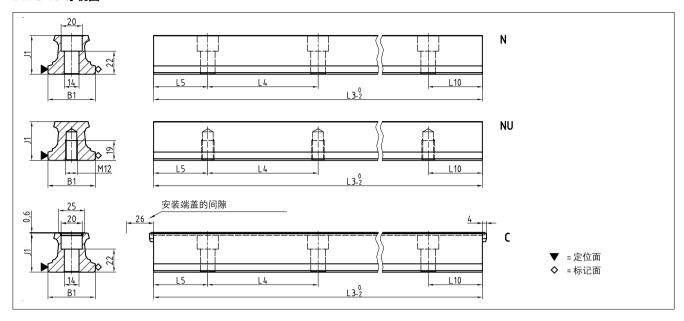
BM S 35 尺寸

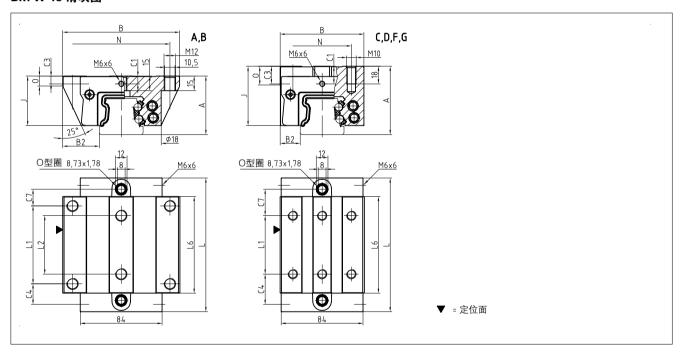
	BM S 35-N	BM S 35-NU	BM S 35-C		
B1: 导轨宽度	34	34	34		
	29.5	29.5	29.5		
L3: 导轨最大长度	6000	6000	6000		
 L4: 安装孔孔距	80	80	80		
L5/L10:第一个/最后一个安装孔距端头的距离	38.5	38.5	38.5		
Gew.: 导轨重量 (kg/m)	5.4	5.7	5.2		

BM S 35 的可选选项

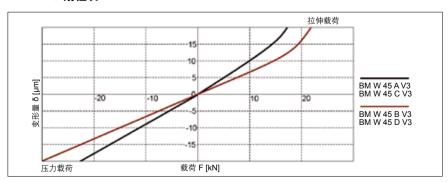
BM W 35 尺寸和承载力

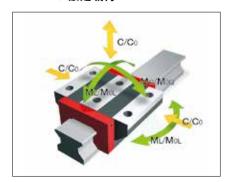
	BM W 35-A	BM W 35-B	BM W 35-C	BM W 35-D	BM W 35-E	BM W 35-F	BM W 35-G
A: 系统高度	48	48	55	55	55	48	48
B: 滑块宽度	100	100	70	70	76	70	70
B2: 导轨基准面与滑块基准面之间的距离	33	33	18	18	21	18	18
C1: 前端中心润滑孔的位置	7	7	14	14	14	7	7
C3: 侧面润滑孔的位置	7	7	14	14	14	7	7
C4: 侧面润滑孔的位置	18.3	31.05	24.3	26.05	24.3	24.3	26.05
C7: 顶部润滑孔的位置	15.8	28.55	21.8	23.55	21.8	21.8	23.55
J: 滑块高度	41	41	48	48	48	41	41
L: 滑块长度	111.6	137.1	111.6	137.1	111.6	111.6	137.1
L1: 外侧安装孔孔距	62	62	50	72	50	50	72
L2: 中间安装孔孔距	52	52	-	-	50	-	-
L6: 钢体长度	79.6	105.1	79.6	105.1	79.6	79.6	105.1
N: 侧面安装孔间距	82	82	50	50	-	50	50
0: 基准面高度	8.5	8.5	15	15	22	8.5	8.5
承载力和重量							
CO: 静态承载力 (Nm)	84400	110300	84400	110300	84400	84400	110300
C100: 动态承载力(Nm)	38700	46700	38700	46700	38700	38700	46700
M0Q: 静态径向翻转力矩(Nm)	1566	2048	1566	2048	1566	1566	2048
MOL: 静态轴向翻转力矩(Nm)	1252	2104	1252	2104	1252	1252	2104
MQ: 动态径向翻转力矩(Nm)	718	867	718	867	718	718	867
ML: 动态轴向扭矩承载力(Nm)	574	891	574	891	574	574	891
Gew: 滑块重量(kg)	1.8	2.3	1.7	2.2	1.9	1.4	1.8


BM W 35 的可选选项



BM 45


BM S 45 导轨图


BM W 45 滑块图

BM W 45 刚性表

BM W 45 额定载荷

BM 45

BM S 45 尺寸

	BM S 45-N	BM S 45-NU	BM S 45-C		
B1: 导轨宽度	45	45	45		
J1: 导轨高度	37	37	37		
L3: 导轨最大长度	6000	6000	6000		
L4: 安装孔孔距	105	105	105		
L5/L10:第一个/最后一个安装孔距端头的距离	51	51	51		
Gew.: 导轨重量 (kg/m)	8.8	9.3	8.6		

BM S 45 的可选选项

BM W 45 尺寸和承载力

	BM W 45-A	BM W 45-B	BM W 45-C	BM W 45-D	BM W 45-F	BM W 45-G
A: 系统高度	60	60	70	70	60	60
B: 滑块宽度	120	120	86	86	86	86
B2: 导轨基准面与滑块基准面之间的距离	37.5	37.5	20.5	20.5	20.5	20.5
C1: 前端中心润滑孔的位置	8	8	18	18	8	8
C3: 侧面润滑孔的位置	8	8	18	18	8	8
	21.05	36.8	31.05	36.8	31.05	36.8
C7: 顶部润滑孔的位置	17.05	32.8	27.05	32.8	27.05	32.8
J: 滑块高度	50.8	50.8	60.8	60.8	50.8	50.8
L: 滑块长度	137.1	168.6	137.1	168.6	137.1	168.6
L1: 外侧安装孔孔距	80	80	60	80	60	80
L2: 中间安装孔孔距	60	60	-	-	-	-
L6: 钢体长度	99.1	130.6	99.1	130.6	99.1	130.6
N: 侧面安装孔间距	100	100	60	60	60	60
0: 基准面高度	10	10	19	19	10	10
承载力和重量						
CO: 静态承载力 (Nm)	134800	176300	134800	176300	134800	176300
C100: 动态承载力(Nm)	61900	74700	61900	74700	61900	74700
M0Q: 静态径向翻转力矩(Nm)	3193	4175	3193	4175	3193	4175
MOL: 静态轴向翻转力矩(Nm)	2498	4199	2498	4199	2498	4199
MQ: 动态径向翻转力矩(Nm)	1466	1769	1466	1769	1466	1769
ML: 动态轴向扭矩承载力(Nm)	1147	1779	1147	1779	1147	1779
Gew: 滑块重量(kg)	3.3	4.2	3.3	4.3	2.7	3.5

BM W 45 的可选选项

BM导轨配件一览表

配件	BM S 15	BM S 20	BM S 25	BM S 30	BM S 35	BM S 45	
堵头:							
塑料堵头	BRK 15	BRK 20	BRK 25	BRK 30	BRK 35	BRK 45	
盖板:							
盖板(备件)	BAC 15	BAC 20	BAC 25	BAC 30	BAC 35	BAC 45	
盖板封盖(备件)	BSC 15-BAC	BSC 20-BAC	BSC 25-BAC	BSC 30-BAC	BSC 35-BAC	BSC 45-BAC	
盖板端盖(备件)	EST 15-BAC	EST 20-BAC	EST 25-BAC	EST 30-BAC	EST 35-BAC	EST 45-BAC	
装配工具:							
安装盖板的工具	BWC 15	BWC 20	BWC 25	BWC 30	BWC 35	BWC 45	

BM滑块配件一览表

配件	BM W 15	BM W 20	BM W 25	BM W 30	BM W 35	BM W 45
辅助刮屑板: NBR材料辅助刮屑板 Viton材料 辅助刮屑板 金属刮屑板	ZBN 15 ZBV 15 ABM 15	ZBN 20 ZBV 20 ABM 20	ZBN 25 ZBV 25 ABM 25	ZBN 30 ZBV 30 ABM 30	ZBN 35 ZBV 35 ABM 35	ZBN 45 ZBV 45 ABM 45
波纹罩: 波纹罩 波纹罩连接板(备件) 波纹罩端面板(备件)	- - -	FBB 20 ZPB 20 EPB 20	FBB 25 ZPB 25 EPB 25	FBB 30 ZPB 30 EPB 30	FBB 35 ZPB 35 EPB 35	FBB 45 ZPB 45 EPB 45
装配轨: 装配轨	MBM 15	MBM 20	MBM 25	MBM 30	MBM 35	MBM 45
自润滑板: 自润滑板	SPL 15-BM	SPL 20-BM	SPL 25-BM	SPL 30-BM	SPL 35-BM	SPL 45-BM
端面板: 端面板的交叉刮板	QAS 15-STB	QAS 20-STB	QAS 25-STB	QAS 30-STB	QAS 35-STB	QAS 45-STB
脂润滑油嘴: 直润滑油嘴 45°润滑油嘴 90°润滑油嘴 M3漏斗式润滑油嘴 M6漏斗式润滑油嘴 用于SN 3-T和SN 6-T的注油枪	- - - SN 3-T - SFP-T3	SN 6 SN 6-45 SN 6-90 SN 3-T SN 6-T SFP-T3	SN 6 SN 6-45 SN 6-90 - SN 6-T SFP-T3	SN 6 SN 6-45 SN 6-90 - SN 6-T SFP-T3	SN 6 SN 6-45 SN 6-90 - SN 6-T SFP-T3	SN 6 SN 6-45 SN 6-90 - SN 6-T SFP-T3
油润滑用变径接头: 直线螺旋式接头M3 M8外圆变径接头 M8外六角接头 G1/8 外六角接头 摆角式接头,外接油管直径d=4mm M6摆角式接头 加长型M6摆角式接头 加长型M6摆角式接头	SA 3-D3	SA 3-D3 SA 6-RD-M8 - - SV 6-D4 SV 6-M6 SV 6-M6-L SV 6-M8 SV 6-M8-L	- SA 6-RD-M8 - - SV 6-D4 SV 6-M6 SV 6-M6-L SV 6-M8 SV 6-M8-L	SA 6-RD-M8 SA 6-6KT-M8 SA 6-6KT-G1/8 SV 6-D4 SV 6-M6 SV 6-M6-L SV 6-M8 SV 6-M8-L	- SA 6-RD-M8 SA 6-6KT-M8 SA 6-6KT-G1/8 SV 6-D4 SV 6-M6 SV 6-M6-L SV 6-M8 SV 6-M8-L	SA 6-RD-M8 SA 6-6KT-M8 SA 6-6KT-G1/8 SV 6-D4 SV 6-M6 SV 6-M6 SV 6-M8-L

BM 导轨配件详述

塑料堵头

BRK塑料堵头是一种低成本的方案以封堵导轨安装孔,能使用简单的工具手动装配到导轨上。推荐用于导轨有防护或污染程度较低的环境,例如,吊装设备。

包装数量: 25件/袋

订货编号: BRK xx

xx=规格,例如:3×BRK 35 (75pcs)

导轨盖板(备件)

BAC盖板将防护功能、安装简单和外表美观等优点一起。导轨盖板用不锈弹簧钢制成,适合在机械负荷和热负载增加的恶劣环境中使用。

BAC盖板具有以下优点:

- 由于紧固在特制的凹槽里,整个长度上有可靠的固定
- 有锁紧端盖(ESTxx-BAC)在导轨末端加以固定
- 材料结实耐牢
- 拆装方便,可多次反复使用
- 通过在凹槽中的导轨孔上安装导轨盖板,对滑块的刮屑板进行保护
- 单根盖板长度可达30m

如果要订带盖板的导轨,盖板也须包括在订单中

订货编码: BAC xx-yy

xx=规格, yy=导轨长度 (mm) 例如: 1 x BAC 35 - 4560

盖板的端盖(备件)

EST端盖用于BAC盖板的收口。塑料端盖在导轨两端嵌入盖板下面的间隙里,以防止盖板翘起或被盖板边棱划伤。

订货编号: EST xx-BAC

xx=规格,例如:2×EST 35-BAC

BM 导轨配件详述

导轨盖板保护端盖 (选配件)

当机械载荷较大时,BSC 保护端盖可用于固定和保护导轨盖板。端盖在导轨末端突出,直角固定且边棱无毛刺,用螺栓紧固在导轨端面。

保护端盖用于振动较大,加工过程中导轨暴露在金属废屑的环境,导轨长度小于600mm,或者垂直安装中EST端盖有脱落风险的应用。

端盖覆盖导轨盖板末端,也起到防止盖板末端尖角划伤的作用。

订货编号: BSC xx-MAC

xx=规格, 例如: 2 x BSC 65-MAC

盖板装配工具

BWC装配工具是用于简化装配BAC盖板。同时它也保证了盖板完全嵌入凹槽中而没有任何间隙。

订货编号: BWC xx

xx=规格, 例如: 1×BWC 35

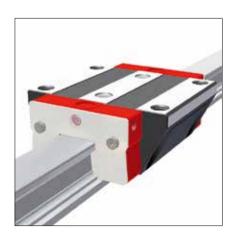
BM滑块配件详述

NBR辅助刮屑板

ZBN-U辅助刮屑板为污染严重的工作环境下的滑块提供了附加保护。由于其灵活性,刮屑板可以直接从导轨上卸下而无需先把滑块取下。 ZBN-U 刮屑板还能与ABM金属刮屑板同时使用。

订货编号: ZBNxx-U

xx=规格,例如:2×ZBN 35-U



Viton橡胶辅助刮屑板

ZBV-U 辅助刮屑板同ZBN-U一样,也是用于在恶劣环境下保护滑块。由Viton®(氟橡胶)制成,也能用于有侵蚀性的冷却液。它也能从导轨上直接装卸,反复使用而无需先卸下滑块。ZBV-U 刮屑板也能与ABM金属刮屑板同时使用。

订货编号: ZBNxx-U

xx=规格,例如:2×ZBV 35-U

金属刮屑板

ABM金属刮屑板由不锈钢制成,用于保护滑块和辅助刮屑板的密封唇口,防止热的金属屑的损害。因为刮屑板和导轨之间间隙尺寸很小,能防止较大的、松散的污染物进入滑块。如果使用AMS系统的导轨则需要安装特殊的连接板。

订货编号: ABM xx

xx=规格,例如: 1 x ABM 35

BM滑块配件详述

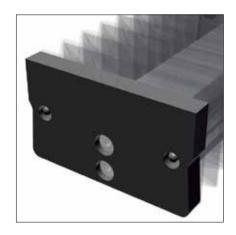
波纹罩

订购MONORAIL BM系列中的BM20到BM45规格可提供标准波纹罩。波纹罩可沿导轨全长移动,进一步起到防尘和防冷却液的作用。波纹罩为化纤织物材料,两面有塑性涂层。波纹罩的尺寸在整根导轨上与滑块的面板相配。滑块的外部尺寸不会因为波纹罩而增加。

波纹罩的安装很简便,需要通过ZPB中间连接板固定并紧固到滑块的端面板上。导轨末端装有末端连接板EPB。波纹罩用铆钉与中间连接板和端面板相连接。 订购整套,随货会提供所需的中间连接板、末端连接板、螺钉和铆钉等。

订货编号: FBB xx-yy

xx=规格, vy=折叠数量 例如: 1×FBB 35-146



波纹罩连接板 (备件)

ZPB连接板用于将FBB波纹罩固定在滑块上,包含在波纹罩的整套订货内。连接板是黑色的氧化铝板,外部轮廓与滑块端面板、波纹罩和末端连接板相同。中央紧固螺栓包括在供货范围内。

订货编号: ZPB xx

xx=规格,例如:2×ZPB35

波纹罩末端连接板(备件)

黑色的氧化铝板,用于将FBB波纹罩固定在导轨的末端,它包含在波纹罩的整套订货内。如果末端连接板是后来加装的,导轨上要加工相应的连接孔。因此,如果要翻新使用,要我们推荐使用感应淬火的导轨。连接板的轮廓与滑块端面板、波纹罩和中间连接板的轮廓相同。紧固螺栓随连接板发货。

订货编号: EPB xx

xx=规格,例如:2×EPB 35

BM滑块配件详述

装配轨

在安装BM导轨时,如果要先把滑块从导轨上卸下来然后再装上,必须使用塑料装配轨MRM。

为了保护滚珠,建议在此过程中不要将滑块从装配轨上取下来。如果需要,可以用 滑块中间的螺孔把滑块固定在装配轨的两个孔上。

订货编号: MBM xx

xx=规格, 例如: 1 x MBM 35

自润滑板

SPL自润滑板用于润滑间隔较长的应用。它内置有润滑剂容器,可以自动地为滑块 提供长时间的均匀润滑。

自润滑板一般用于干燥、清洁的环境,如吊装设备或机床的辅助轴。

自润滑板的优点是:

- 无论导轨的安装位置如何,都能确保润滑剂的有效供给
- 润滑周期长,可达5000km或12个月
- 注油孔是螺纹孔
- 润滑和配件成本低
- 所耗润滑油少,减少对环境的污染
- 润滑油直接到达导轨表面, 因此刮屑板使用寿命加长

在未达到最大行程之前无需再次加油。建议自润滑板成套使用,能给滑块提供有效的润滑。

自润滑板与滑块端面板的外形尺寸相同, 也可以后加装使用。

如果导轨可能接触到进入的污染物,必须使用ZBN-U/ZBV-U辅助刮屑板。

订货编号: SPL xx-BM

xx=规格,例如:2×SPL 35-BM

端面板的刮屑板

QAS双唇口刮屑板内置在端面板内,在滑块末端起到密封的作用,以防止污染物的 进入或润滑剂的损耗。

由于刮屑板是易耗件,因此需要定期检查,如果有必要则进行更换。

订货编号: QASxx-STB

xx=规格,例如:1×QAS 35-STB

4.4 订货编号

所有的导轨应根据以下订货编号进行订货。

2.1章和4.3分别描述了配件的订货规则。

不同的导轨、滑块和配件都使用各自的订货编号。不同版本的导轨和滑块也有各自的编号。

所有的导轨组件都是未装配,按标准件单独供货的。

如果需要,SCHNEEBERGER也提供装配好的导轨、滑块和配件作为整套系统。具体请参看2.4章的订货指导。

MR导轨的订货编号

	2x	BM S	25	-N	-G3	-кс	-R1	-958	-29	-29	-CN
数量											
导轨											
尺寸											
导轨类型											
精度											
直线度											
基准面											
始端安装孔中心到最近端头距离L5											
末端安装孔中心到最近端头距离L10											
镀层											

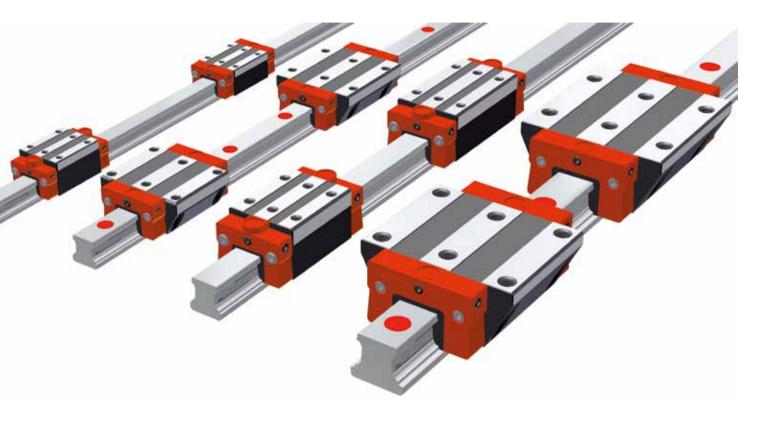
NB

第4.1章到4.3章介绍了所有的型号、具体规格、选项和配件。

第2章描述了所有的选项。

如果可能, L3尺寸最好是标准长度。

这是使用第4.2章中的等式计算得出的: L3=n×L4+L5+L10≤L3max


BM滑块的订货编号

	4x	BM W	25	-A	-G3	-V1	-R1	-CN	-S10	-LN
数量										
滑块										
尺寸										
滑块类型										
精度										
预紧										
基准面										
镀层										
润滑接口										
润滑的交货条件										

NB

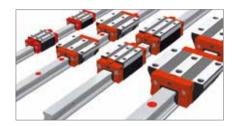
第4.1到4.3章介绍了所有的型号、具体规格、选项和配件。 第2章中描述了所有的选项。

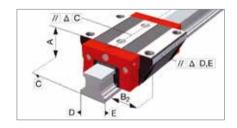
SCHNEEBERGER BM 的WR/SR 系列导轨采用不锈钢材质,同时具有MONORAIL BM 滚珠直线导轨的产品性能。在很多应用中腐蚀对加工过程有很大的影响,传统 的防锈镀层导轨不能满足防锈要求,不锈钢导轨能应对恶劣的工况条件,满足这些 应用要求。

对于有特殊防锈要求的应用,如食品加工、医疗设备、洁净室等,MONORAIL BM WR/SR 可以更好地保证运行过程的清洁、精度、使用寿命和可靠性。

MONORAIL BM WR/SR 同时具有MONORAIL BM 产品同样成熟的产品性能,如高 效能、高速运行,使用寿命长等优势。

MONORAIL BM WR / BM SR 系统的特点





BM SR 导轨简介	Page 88
BM WR 滑块简介	Page 89

5.2 技术参数和选项

BM WR / BM SR 15	Page 90
BM WR / BM SR 20	Page 92
BM WR / BM SR 25	Page 94
BM WR / BM SR 35	Page 96

5.3 MONORAIL BM WR / BM SR 配件

配件一览表 Page 98

5.4 订单格式

BM SR 导轨订单格式	Page 99
BM WR 滑块订单格式	Page 99

BM SR 导轨

BM SR 导轨简介

	ND 标准,全淬火	NUD 底部安装,全 淬火			
导轨规格/导轨类型					
15	BM SR 15-ND	BM SR 15-NUD			
20	BM SR 20-ND	BM SR 20-NUD			
25	BM SR 25-ND	BM SR 25-NUD			
35	BM SR 35-ND	BM SR 35-NUD			
特点					
顶部螺栓紧固	•				
底部螺栓紧固		•			
装配简便		•			

BM SR 导轨的可选选项

精度

■~ G1 高精密级

□ へ 62 精密级

◯ 63 普通级

直线度

人 KC 标准

基准面

镀层

BM SR 导轨可选配件

堵头

BM WR 滑块

BM WR 滑块简介

	A 标准	B 标准加长型	C 标准窄高型	D 窄高加长型	F 紧凑型	
滑块规格/滑块类型						
15	BM WR 15-A		BM WR 15-C		BM WR 15-F	
20	BM WR 20-A	BM WR 20-B	BM WR 20-C	BM WR 20-D		
25	BM WR 25-A	BM WR 25-B	BM WR 25-C	BM WR 25-D		
35	BM WR 35-A	BM WR 35-B	BM WR 35-C	BM WR 35-D		
特点						
顶部螺栓紧固	•	•	•	•	•	
底部螺栓紧固	•	•				
用于高承载和扭矩		•		•		
用于中等承载和扭矩	•		•		•	
用于有限空间					•	

BM WR 滑块的可选选项

精度

■ ~ G1 高精密级

☆ 62 精密级

G3 普通级

预紧力

▶ 1 10 较低

/ V1 低

V2 中等

S13 □ 左上侧

S23 □ 右上侧

S42 口 右侧

基准面

R1 底部

R2 顶部

镀层

☐ CN 无镀层

润滑接口

S10 № 左侧中央

S20 □ 右侧中央

S11 € 顶部左侧

S21 □ 顶部右侧

S12 □ 左下侧

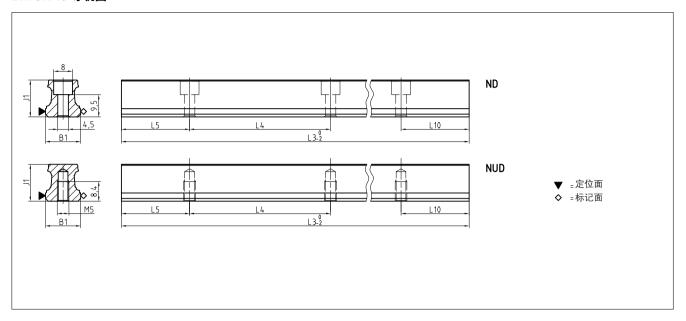
S22 □ 右下侧

出厂润滑保护

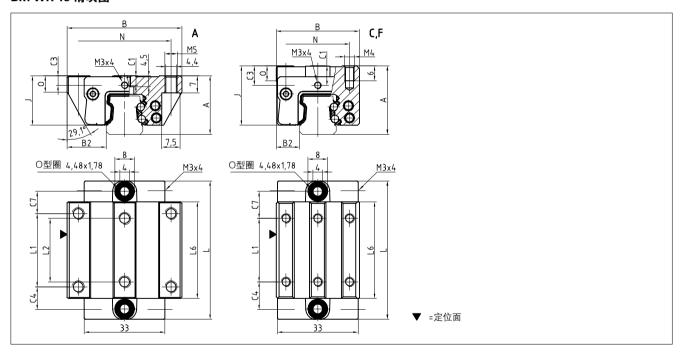
△。LN 润滑油保护

▲。LK 客户定制

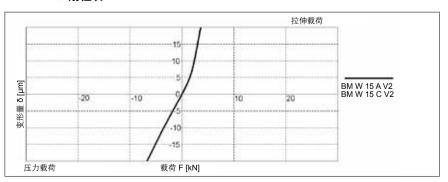
BM WR 滑块可选配件

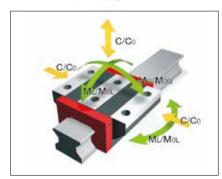

详见第5.3和2.1章

辅助刮屑板 端面板


波纹罩 润滑油嘴 装配轨 润滑连接板 自润滑板

BM WR / BM SR 15


BM SR 15 导轨图


BM WR 15 滑块图

BM WR 15 刚性表

BM WR 15 额定载荷

BM WR / BM SR 15

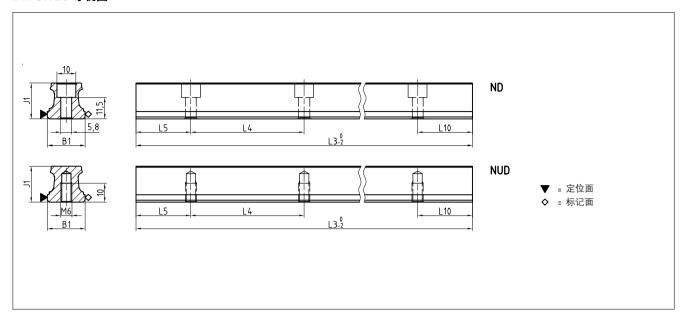
BM SR 15 尺寸

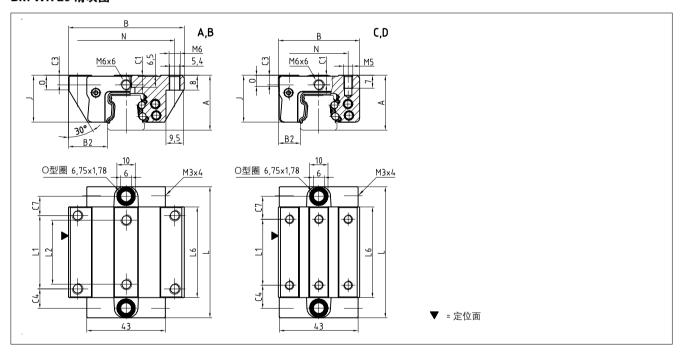
		BM SR 15-ND	BM SR 15-NUD			
B1:	导轨宽度	15	15			
J1:	导轨高度	15.7	15.7			
L3:	导轨最大长度	1000	1000			
L4:	安装孔孔距	60	60			
L5/L10):第一个/最后一个安装孔距端头的距离	28.5	28.5			
Gew.:	导轨重量 (kg/m)	1.4	1.4			

BM SR 15 的可选选项

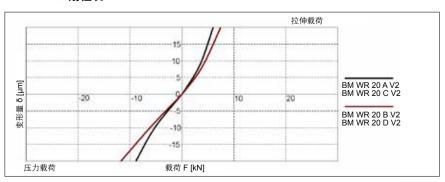
BM WR 15 尺寸和承载力

24	28					
	28	24				
47	34	34				
16	9.5	9.5				
4	8	4				
4	8	4				
9.3	11.3	11.3				
9.05	11.05	11.05				
20.2	24.2	20.2				
56.6	56.6	56.6				
30	26	26				
26	-	-				
39.6	39.6	39.6				
38	26	26				
7	6	5.5				
16660	16660	16660				
7650	7650	7650				
154	154	154				
124	124	124				
71	71	71				
57	57	57				
0.2	0.3	0.2				
1 4 4 5 5 2 5 3 7 1 1 7 1 1 7 5	66 4 4 9.3 9.05 90.2 96.6 99.6 99.6 98.8 7	6 9.5 4 8 8 8 9.3 11.3 9.05 11.05 9.0.2 24.2 9.6.6 56.6 9.0 26 9.6 - 9.9.6 39.6 88 26 7 6 6 6660 16660 7650 7650 54 154 24 124 71 71	9.5 9.5 9.5 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6 9.5 9.5 4 8 4 3.3 11.3 11.3 10.05 11.05 11.05 20.2 24.2 20.2 36.6 56.6 56.6 30 26 26 26 - - 39.6 39.6 39.6 38 26 26 6 5.5	6 9.5 9.5 4 8 4 9.3 11.3 11.3 10.05 11.05 11.05 20.2 24.2 20.2 36.6 56.6 56.6 30 26 26 26 - - 39.6 39.6 39.6 38 26 26 6 5.5	9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5


BM WR 15 的可选选项



BM WR / BM SR 20


BM SR 20 导轨图

BM WR 20 滑块图

BM WR 20 刚性表

BM WR 20 额定载荷

BM WR / BM SR 20

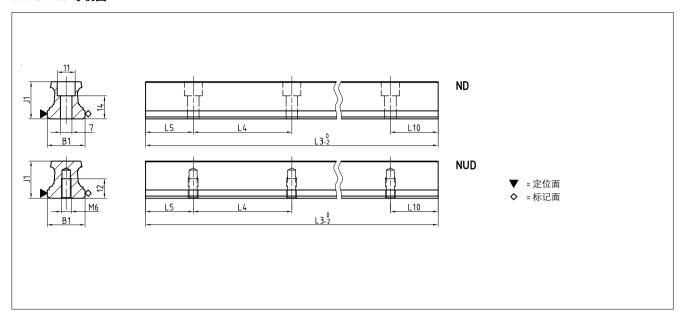
BM SR 20 尺寸

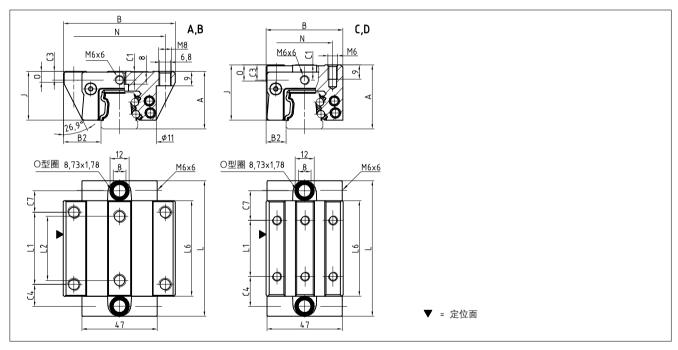
		BM SR 20-ND	BM SR 20-NUD			
B1:	导轨宽度	20	20			
J1:	导轨高度	19	19			
L3:	导轨最大长度	1000	1000			
L4:	安装孔孔距	60	60			
L5/L10	D:第一个/最后一个安装孔距端头的距离	28.5	28.5			
Gew.:	导轨重量 (kg/m)	2.2	2.3			

BM SR 20 的可选选项

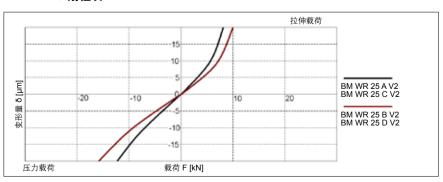
BM WR 20 尺寸和承载力

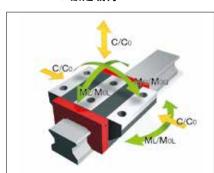
30 63 21.5 5.2 5.2 18.75 18.25	30 44 12 5.2 5.2 12.75	30 44 12 5.2 5.2			
21.5 5.2 5.2 18.75	12 5.2 5.2	12 5.2			
5.2 5.2 18.75	5.2 5.2	5.2			
5.2 18.75	5.2				
18.75		5.2			
	12.75				
18.25		13.75			
.0.20	12.25	13.25			
25.5	25.5	25.5			
87.5	71.5	87.5			
40	36	50			
35	-	-			
65.5	49.5	65.5			
53	32	32			
8	6	6			
34935	26690	34935			
14790	12240	14790			
417	317	417			
421	248	421			
175	145	175			
177	114	177			
0.6	0.4	0.5			
	25.5 87.5 40 35 65.5 53 8 34935 14790 417 421 175 177	25.5 25.5 87.5 71.5 40 36 35 - 65.5 49.5 53 32 8 6 34935 26690 14790 12240 417 317 421 248 175 145 177 114	25.5 25.5 87.5 71.5 40 36 35 - 65.5 49.5 65.5 32 32 32 8 6 34935 26690 417 317 417 417 421 248 421 175 145 175 177 114 177	25.5 25.5 25.5 87.5 71.5 87.5 40 36 50 35 - - 65.5 49.5 65.5 53 32 32 8 6 6 34935 26690 34935 14790 12240 14790 417 317 417 421 248 421 175 145 175 177 114 177	25.5 25.5 25.5 87.5 71.5 87.5 40 36 50 35 - - 65.5 49.5 65.5 53 32 32 8 6 6 34935 26690 34935 14790 12240 14790 417 317 417 421 248 421 175 145 175 177 114 177


BM WR 20 的可选选项



BM WR / BM SR 25


BM SR 25 导轨图


BM WR 25 滑块图

BM WR 25 刚性表

BM WR 25 额定载荷

BM WR / BM SR 25

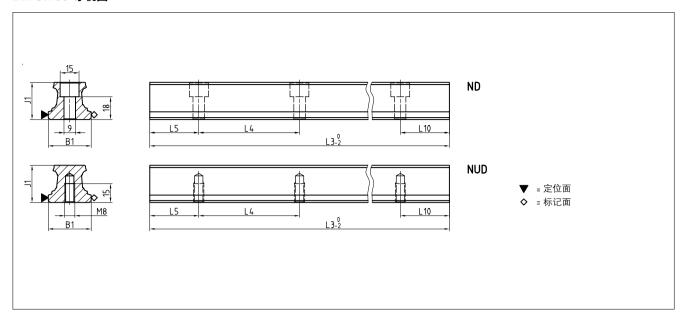
BM SR 25 尺寸

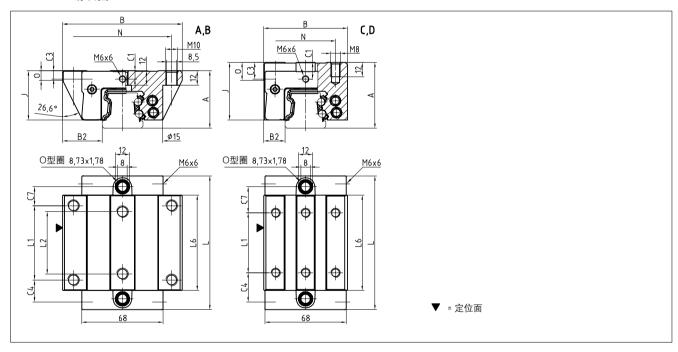
		BM SR 25-ND	BM SR 25-NUD			
B1:	导轨宽度	23	23			
J1:	导轨高度	22.7	22.7			
L3:	导轨最大长度	1000	1000			
L4:	安装孔孔距	60	60			
L5/L1	D:第一个/最后一个安装孔距端头的距离	28.5	28.5			
Gew.:	导轨重量 (kg/m)	3.0	3.1			

BM SR 25 的可选选项

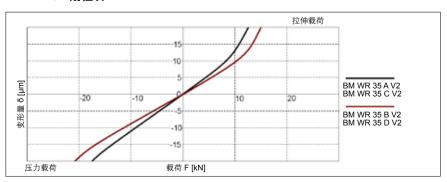
BM WR 25 尺寸和承载力

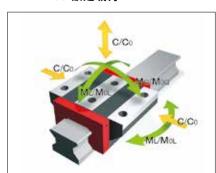
	BM WR 25-A	BM WR 25-B	BM WR 25-C	BM WR 25-D		
A: 系统高度	36	36	40	40		
B: 滑块宽度	70	70	48	48		
B2: 导轨基准面与滑块基准面之间的距离	23.5	23.5	12.5	12.5		
C1: 前端中心润滑孔的位置	5.5	5.5	9.5	9.5		
C3: 侧面润滑孔的位置	5.5	5.5	9.5	9.5		
C4: 侧面润滑孔的位置	13.75	23.35	18.75	20.75		
C7: 顶部润滑孔的位置	13.5	23	18.5	20.5		
J: 滑块高度	30.5	30.5	34.5	34.5		
L: 滑块长度	84.5	103.5	84.5	103.5		
L1: 外侧安装孔孔距	45	45	35	50		
L2: 中间安装孔孔距	40	40	-	-		
L6: 钢体长度	59.5	78.5	59.5	78.5		
N: 侧面安装孔间距	57	57	35	35		
0: 基准面高度	7	7	11	11		
承载力和重量						
CO: 静态承载力 (Nm)	39185	51255	39185	51255		
C100: 动态承载力(Nm)	17935	21675	17935	21675		
M0Q: 静态径向翻转力矩(Nm)	536	701	536	701		
MOL: 静态轴向翻转力矩(Nm)	436	734	436	734		
MQ: 动态径向翻转力矩(Nm)	246	297	246	297		
ML: 动态轴向扭矩承载力(Nm)	200	310	200	310		
Gew: 滑块重量(kg)	0.7	0.9	0.6	0.8		


BM WR 25 的可选选项



BM WR / BM SR 35


BM SR 35 导轨图


BM WR 35 滑块图

BM WR 35 刚性表

BM WR 35 额定载荷

BM WR / BM SR 35

BM SR 35 尺寸

	BM SR 35-ND	BM SR 35-NUD			
B1: 导轨宽度	34	34			
	29.5	29.5			
L3: 导轨最大长度	1000	1000			
L4: 安装孔孔距	80	80			
L5/L10:第一个/最后一个安装孔距端头的距离	38.5	38.5			
Gew.: 导轨重量 (kg/m)	5.4	5.7			

BM SR 35 的可选选项

BM WR 35 尺寸和承载力

	BM WR 35-A	BM WR 35-B	BM WR 35-C	BM WR 35-D		
A: 系统高度	48	48	55	55		
B: 滑块宽度	100	100	70	70		
B2: 导轨基准面与滑块基准面之间的距离	33	33	18	18		
C1: 前端中心润滑孔的位置	7	7	14	14		
C3: 侧面润滑孔的位置	7	7	14	14		
C4: 侧面润滑孔的位置	18.3	31.05	24.3	26.05		
C7: 顶部润滑孔的位置	15.8	28.55	21.8	23.55		
J: 滑块高度	41	41	48	48		
L: 滑块长度	111.6	137.1	111.6	137.1		
L1: 外侧安装孔孔距	62	62	50	72		
L2: 中间安装孔孔距	52	52	-	-		
L6: 钢体长度	79.6	105.1	79.6	105.1		
N: 侧面安装孔间距	82	82	50	50		
0: 基准面高度	8	8	15	15		
承载力和重量						
CO: 静态承载力 (Nm)	71740	93755	71740	93755		
C100: 动态承载力(Nm)	32895	39695	32895	39695		
M0Q: 静态径向翻转力矩(Nm)	1331	1741	1331	1741		
MOL: 静态轴向翻转力矩(Nm)	1064	1788	1064	1788		
MQ: 动态径向翻转力矩(Nm)	610	737	610	737		
ML: 动态轴向扭矩承载力(Nm)	488	757	488	757		
Gew: 滑块重量(kg)	1.8	2.3	1.7	2.2		

BM WR 35 的可选选项

BM SR 导轨配件一览表

配件	BM SR 15	BM SR 20	BM SR 25	BM SR 35		
堵头:						
塑料堵头	BRK 15	BRK 20	BRK 25	BRK 35		

BM WR 滑块配件一览表

配件	BM WR 15	BM WR 20	BM WR 25	BM WR 35		
辅助刮屑板:						
NBR材料辅助刮屑板	ZBN 15	ZBN 20	ZBN 25	ZBN 35		
Viton材料辅助刮屑板	ZBV 15	ZBV 20	ZBV 25	ZBV 35		
金属刮屑板	ABM 15	ABM 20	ABM 25	ABM 35		
波纹罩:						
波纹罩	-	FBB 20	FBB 25	FBB 35		
波纹罩连接板(备件)	-	ZPB 20	ZPB 25	ZPB 35		
波纹罩端面板(备件)	-	EPB 20	EPB 25	EPB 35		
装配轨:						
装配轨	MBM 15	MBM 20	MBM 25	MBM 35		
自润滑板:						
自润滑板	SPL 15-BM	SPL 20-BM	SPL 25-BM	SPL 35-BM		
端面板:						
端面板的交叉刮板	QAS 15-STB	QAS 20-STB	QAS 25-STB	QAS 35-STB		
脂润滑油嘴:						
M3漏斗式润滑油嘴	SN 3	SN 3	-	-		
M6漏斗式润滑油嘴	-	SN 6-V2A	SN 6-V2A	SN 6-V2A		
45° 润滑油嘴	-	SN 6-45-V2A	SN 6-45-V2A	SN 6-45-V2A		
90°润滑油嘴 M3 45°漏斗式润滑油嘴	- SN 3-T-45	SN 6-90-V2A SN 3-T-45	SN 6-90-V2A	SN 6-90-V2A		
用于SN 3-T和SN 6-T的注油枪	SFP-T3	SFP-T3	SFP-T3	SFP-T3		
	CIT TO	GIT TO	011 10	011 10		
油润滑用变径接头:	04.0.00	CA O DO				
直线螺旋式接头M3 直线螺旋式接头M6	SA 3-D3	SA 3-D3 SA 6-D4	- SA 6-D4	- SA 6-D4		
M8外六角接头	-	SA 6-6KT-M8x1-L	SA 6-6KT-M8x1-L			
摆角式接头,外接油管直径d=3mm	SV 3-D3	SV 3-D3	-	-		
摆角式接头,外接油管直径d=4mm	-	SV 6-D4	SV 6-D4	SV 6-D4		
M8摆角式接头	-	SV 6-M8x1	SV 6-M8x1	SV 6-M8x1		

如需其它润滑选项请垂询

5.4 订货编号

所有的导轨应根据以下订货编号进行订货。

2.1章和5.3分别描述了配件的订货规则。

不同的导轨、滑块和配件都使用各自的订货编号。不同版本的导轨和滑块也有各自的编号。

所有的导轨组件都是未装配,按标准件单独供货的。

如果需要,SCHNEEBERGER也提供装配好的导轨、滑块和配件作为整套系统。具体请参看2.4章的订货指导。

BM SR 导轨的订货编号

	2x	BM SR	25	-N	-G3	-КС	-R1	-958	-29	-29	-CN
数量											
导轨											
尺寸											
导轨类型											
精度											
直线度											
基准面											
导轨长度L3	导轨长度L3										
始端安装孔中心到最近端头距离L5											
末端安装孔中心到最近端头距离L10											
镀层											

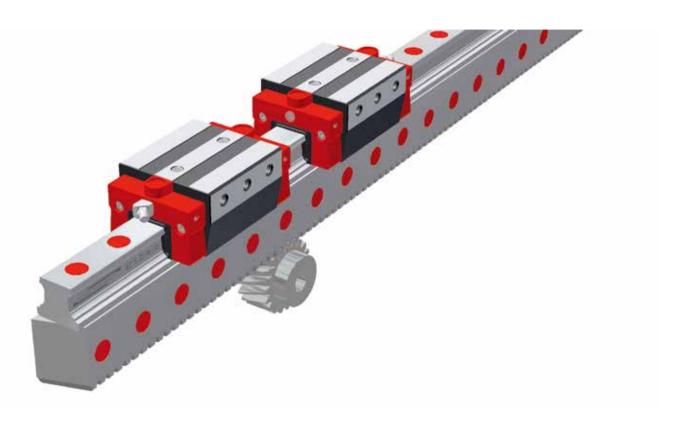
NB

第5.1章到5.3章介绍了所有的型号、具体规格、选项和配件。

第2章描述了所有的选项。

如果可能, L3尺寸最好是标准长度。

这是使用第5.2章中的等式计算得出的: L3=n×L4+L5+L10≤L3max


BM WR 滑块的订货编号

	4x	BM WR	25	-A	-G3	-V1	-R1	-CN	-S99	-LN
数量										
滑块										
尺寸										
滑块类型										
精度										
预紧										
基准面										
镀层										
润滑接口										
润滑的交货条件										

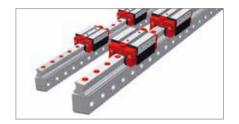
NB

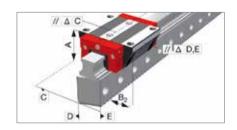
第5.1到5.3章介绍了所有的型号、具体规格、选项和配件。 第2章中描述了所有的选项。

SCHNEEBERGER将MONORAIL BM直线导轨出色的运行特性延伸到MONORAIL BZ产 品上,它结合了MONORAIL BM和一体式高精度齿轮驱动的优点。 您可以在MONORAIL BZ上看到以下明显优势:

- 单根导轨系统可长达6000mm
- 高质量齿条(经过淬火和精磨处理)
- 可节省25%的生产和装配成本
- 以MONORAIL直线导轨为基础,具有运行特性出色、承载大、使用寿命长的优点
- 根据客户需要有多种滑块、配件可选,也可选择齿轮型号和精度等级

MONORAIL BZ 系统的特点





BZ 导轨简介	Page 104
BM 滑块简介	Page 105

6.2 技术参数和选项

BZ 25	Page 106
BZ 35	Page 108

6.3 MONORAIL BZ 配件

配件一览表	Page 110
BZ导轨配件详述	Page 111
BM滑块配件详述	Page 81

6.4 订单格式

3Z导轨订单格式	Page 114
3M滑块订单格式	Page 114

BZ 导轨

BZ导轨简介

	NX 标准,半孔距			
导轨规格/导轨类型				
25	BZ S 25-NX			
35	BZ S 35-NX			
特点				
侧面螺栓紧固	•			
	•			
单根最长6m	•			

BZ导轨的可选选项

齿轮精度

基准面

₩ Q5 硬度高,磨制

Moss Q6表面平整,铣削 底部

R2 顶部

镀层

──<mark>™</mark> 无镀层

CH 硬化镀铬

BZ导轨的可选配件

堵头

齿轮

其他

BZ 滑块

BM滑块简介

滑块规格/滑块类型	A 标准	B 标准加长型	C 标准窄高型	D 窄高加长型	E 标准窄高型, 侧面固定	F 紧凑型	G 紧凑加长型
25	BM W 25-A	BM W 25-B	BM W 25-C	BM W 25-D	BM W 25-E	BM W 25-F	BM W 25-G
35	BM W 35-A	BM W 35-B	BM W 35-C	BM W 35-D	BM W 35-E	BM W 35-F	BM W 35-G
特点							
顶部螺栓紧固	•	•	•	•		•	•
底部螺栓紧固	•	•					
侧面螺栓紧固					•		
用于高承载和扭矩		•		•			•
用于中等承载和扭矩	•		•		•	•	
用于有限空间						•	•

BM滑块的可选选项

精度

---- GO 超高精密级

■~ G1 高精密级 **■~ G2** 精密级

G3 普通级

预紧力

№ 较低

从V1 低

/ V2 中等

S13 🗀 左上侧

S23 □ 右上侧

S42 口 右侧

▲V3 高

基准面

R1 底部

镀层

CH 硬化镀铬

润滑接口

S10 № 左侧中央

S20 □ 右侧中央

S11 € 顶部左侧

S21 □ 顶部右侧

S12 □ 左下侧

S22 □ 右下侧

出厂润滑保护

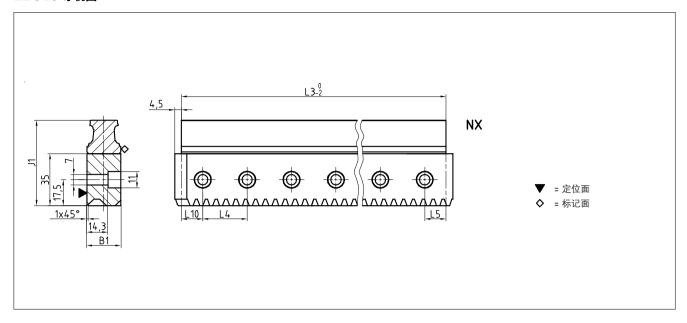
△。LN 润滑油保护

LG 润滑脂保护

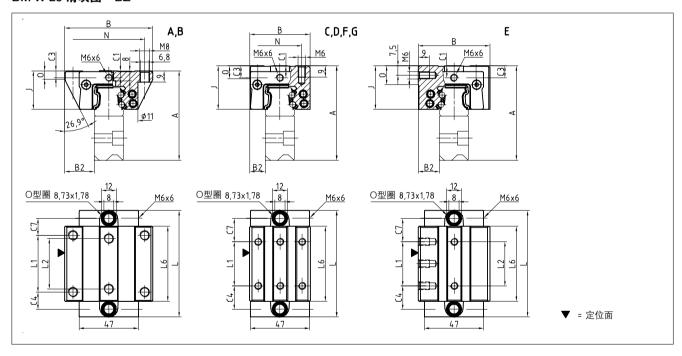
※ 充分润滑

BM 滑块的可选配件

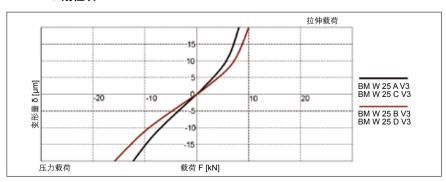
详见第4.3和2.1章

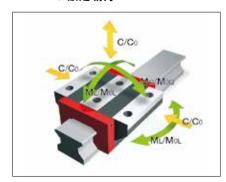

辅助刮屑板 端面板

波纹罩 润滑油嘴


装配轨 润滑连接板 自润滑板

BZ 25


BZ S 25 导轨图


BM W 25 滑块图 - BZ

BM W 25 刚性表

BM W 25 额定载荷

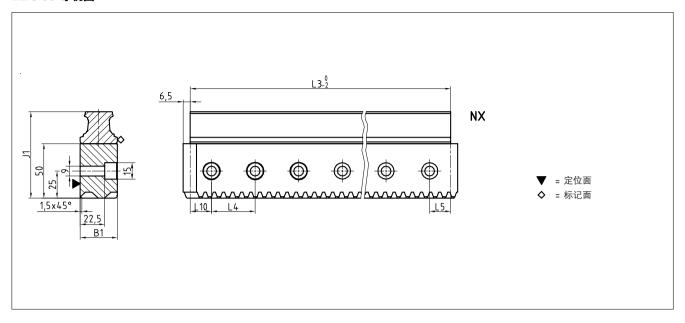
BZ 25

BZ S 25 尺寸

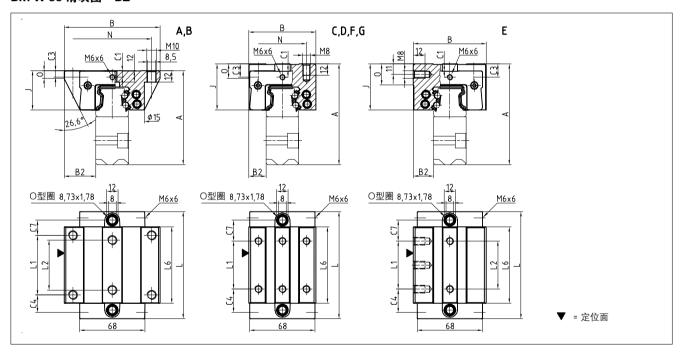
		BZ S 25-NX			
B1:	导轨宽度	23			
J1:	导轨高度	57.7			
L3:	导轨最大长度	6000			
L4:	安装孔孔距	30			
L5/L1	D:第一个/最后一个安装孔距端头的距离	15			
m:	模数	2			
α:	倾角	19°31'42"			
Gew.:	导轨重量(kg/m)	8.9			

BZ S 25 的可选选项

BM W 25 尺寸和承载力

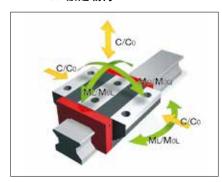

	BM W 25-A	BM W 25-B	BM W 25-C	BM W 25-D	BM W 25-E	BM W 25-F	BM W 25-G
A: 系统高度	71	71	75	75	75	71	71
B: 滑块宽度	70	70	48	48	57	48	48
B2: 导轨定位面和滑块定位面之间的距离	23.5	23.5	12.5	12.5	17	12.5	12.5
	5.5	5.5	9.5	9.5	9.5	5.5	5.5
C3: 侧面润滑孔的位置	5.5	5.5	9.5	9.5	9.5	5.5	5.5
C4: 侧面润滑孔的位置	13.75	23.25	18.75	20.75	18.75	18.75	20.75
C7: 顶部润滑孔的位置	13.5	23	18.5	20.5	18.5	18.5	20.5
J: 滑块高度	30.5	30.5	34.5	34.5	34.5	30.5	30.5
L: 滑块长度	84.5	103.5	84.5	103.5	84.5	84.5	103.5
L1: 外侧安装孔孔距	45	45	35	50	35	35	50
L2: 中间安装孔孔距	40	40	-	-	35	-	-
 L6: 钢体长度	59.5	78.5	59.5	78.5	59.5	59.5	78.5
N: 侧面安装孔间距	57	57	35	35	-	35	35
0: 基准面高度	7	7	11	11	15	7.1	7.1
承载力和重量							
CO: 静态承载力 (Nm)	46100	60300	46100	60300	46100	46100	60300
C100: 动态承载力(Nm)	21100	25500	21100	25500	21100	21100	25500
M0Q: 静态径向翻转力矩(Nm)	631	825	631	825	631	631	825
MOL: 静态轴向翻转力矩(Nm)	513	836	513	863	513	513	863
MQ: 动态径向翻转力矩(Nm)	289	349	289	349	289	289	349
ML: 动态轴向扭矩承载力(Nm)	235	365	235	365	235	235	365
Gew: 滑块重量(kg)	0.7	0.9	0.6	0.8	0.7	0.6	0.7

BM W 25 的可选选项



BZ 35

BZ S 35 导轨图


BM W 35 滑块图 – BZ

BM W 35 刚性表

拉伸载荷 15 10 10 10 10 10 10 20 BM W 35 A V3 BM W 35 C V3 BM W 35 B V3 BM W 35 D V3 BM W 35 D V3

BM W 35 额定载荷

BZ 35

BZ S 35 尺寸

	BZ S 35-NX			
B1: 导轨宽度	34			
J1: 导轨高度	79.5			
L3: 导轨最大长度	6000			
L4: 安装孔孔距	40			
L5/L10:第一个/最后一个安装孔距端头的距	훜 20			
m: 模数	2.5			
α: 倾角	19°31'42"			
Gew.: 导轨重量 (kg/m)	17.9			

BZ S 35 的可选选项

BM W 35 尺寸和承载力

	BM W 35-A	BM W 35-B	BM W 35-C	BM W 35-D	BM W 35-E	BM W 35-F	BM W 35-G
	98	98	105	105	105	98	98
B: 滑块宽度	100	100	70	70	76	70	70
B2: 导轨定位面和滑块定位面之间的距离	33	33	18	18	21	18	18
 C1: 前端中心润滑孔的位置	7	7	14	14	14	7	7
C3: 侧面润滑孔的位置	7	7	14	14	14	7	7
	18.3	31.05	24.3	26.05	24.3	24.3	26.05
	15.8	28.55	21.8	23.55	21.8	21.8	23.55
	41	41	48	48	48	41	41
L: 滑块长度	111.6	137.1	111.6	137.1	111.6	111.6	137.1
	62	62	50	72	50	50	72
L2: 中间安装孔孔距	52	52	-	-	50	-	-
 L6: 钢体长度	79.6	105.1	79.6	105.1	79.6	79.6	105.1
N: 侧面安装孔间距	82	82	50	50	-	50	50
0: 基准面高度	8	8	15	15	22	8	8
承载力和重量		-		-			
CO: 静态承载力 (Nm)	84400	110300	84400	110300	84400	84400	110300
C100: 动态承载力(Nm)	38700	46700	38700	46700	38700	38700	46700
MOQ: 静态径向翻转力矩(Nm)	1566	2048	1566	2048	1566	1566	2048
MOL: 静态轴向翻转力矩(Nm)	1252	2104	1252	2104	1252	1252	2104
MQ: 动态径向翻转力矩(Nm)	718	867	718	867	718	718	867
ML: 动态轴向扭矩承载力(Nm)	574	891	574	891	574	574	891
Gew: 滑块重量(kg)	1.8	2.3	1.7	2.2	1.9	1.4	1.8

BM W 35 的可选选项

BZ导轨配件一览表

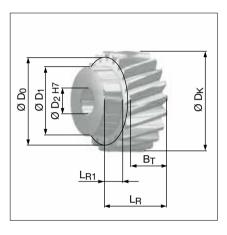
配件	BZ S 25	BZ S 35			
堵头:					
塑料堵头	BRK 25	BRK 35			
齿轮:					
带通孔的齿轮	BZR 25	BZR 35			
带通孔和键槽的齿轮	BZR 25K	BZR 35K			
带齿轮轴的齿轮	BZR 25-S	BZR 35-S			
带齿轮轴和键槽的齿轮	BZR 25-SK	BZR 35-SK			
其他:					
润滑齿轮	BZR 25-LK	BZR 35-L			
润滑齿轮轮轴	BZR 25-LN	BZR 35-LN			
BZ系统的安装工具	BZM 25	BZM 35			

BM滑块配件一览表

配件	BM W 25	BM W 35			
辅助刮屑板: NBR材料辅助刮屑板 Viton材料 辅助刮屑板 金属刮屑板	ZBN 25 ZBV 25 ABM 25	ZBN 35 ZBV 35 ABM 35			
波纹罩: 波纹罩 波纹罩连接板(备件) 波纹罩端面板(备件)	FBB 25 ZPB 25 EPB 25	FBB 35 ZPB 35 EPB 35			
装配轨: 装配轨	MBM 25	MBM 35			
自润滑板 : 自润滑板	SPL 25-BM	SPL 35-BM			
端面板: 端面板的交叉刮板	QAS 25-STB	QAS 35-STB			
脂润滑油嘴: 直润滑油嘴 45°润滑油嘴 90°润滑油嘴 M3漏斗式润滑油嘴 M6漏斗式润滑油嘴 用于SN 3-T和SN 6-T的注油枪	SN 6 SN 6-45 SN 6-90 - SN 6-T SFP-T3	SN 6 SN 6-45 SN 6-90 - SN 6-T SFP-T3			
油润滑用变径接头: 直线螺旋式接头M3 M8外圆变径接头 M8外六角接头 G1/8 外六角接头 摆角式接头,外接油管直径d=4mm M6摆角式接头 加长型M6摆角式接头 M8摆角式接头 加长型M8摆角式接头	- SA 6-RD-M8 - - SV 6-D4 SV 6-M6 SV 6-M6-L SV 6-M8 SV 6-M8-L	- SA 6-RD-M8 SA 6-6KT-M8 SA 6-6KT-G1/8 SV 6-D4 SV 6-M6 SV 6-M6-L SV 6-M8 SV 6-M8-L			

6.3 配件

BZ 导轨配件详述


塑料堵头

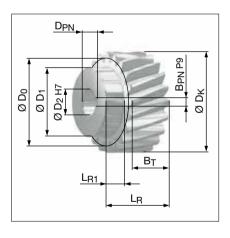
如果需要,所有的BZ导轨安装孔都可以用BRK塑料堵头密封。但是,滑块运行区域外的部分可以不装配堵头。

包装数量: 25件/袋

订单编号: BRK xx

xx = 规格, 例如: 3 × BRK 25 (75pcs)

带通孔的齿轮

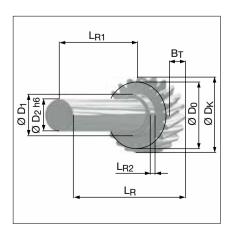

齿轮经过硬化淬火磨削处理,斜齿的精度等级6级。通孔相对较软,可根据客户需要进行加工。

这种齿轮也能带有键槽(见下一段)。

规格尺寸请在BZR xx 的尺寸表格中查找。

订货编号:

25: BZR 25-2.0-20-S6 35: BZR 35-2.5-20-S6


带通孔和键槽的齿轮

这种齿轮与带通孔的齿轮相似,但它另外带有键槽,键槽符合DIN 6885-A的标准,能与驱动轴相连。

规格尺寸请在BZR xx -K的尺寸表格中查找。

订货编号:

25: BZR 25-2.0-20-S6-K 35: BZR 35-2.5-20-S6-K

带齿轮轴的齿轮

齿轮经过硬化淬火磨削处理,斜齿牙的精度等级6级,并带有齿轮轴。齿轮轴的左端没有经过硬化淬火,可以根据需要进行加工。

这种齿轮也能带有键槽(见下一段)。

规格尺寸请在BZR xx -S的尺寸表格中查找。

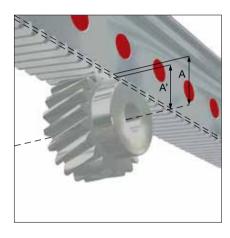
订货编号:

25: BZR 25-S-2.0-20-S6 35: BZR 35-S-2.5-20-S6

6.3 配件

LR1 LPN APN BT OQ Q VAQ Q VAQ Q LR2 LR2 LR

BZ 导轨配件详述


带齿轮轴和键槽的齿轮

这种齿轮与带齿轮轴的齿轮相似,但它另外带有键槽,键槽符合DIN 6885-A的标准。

规格尺寸请在BZR xx-S-K的尺寸表格中查找。

订货编号:

25: BZR 25-S-2.0-20-S6-K 35: BZR 35-S-2.5-20-S6-K

尺寸A 和A'

齿轮尺寸

		_		_		_		_
	BZR 25	BZR 35	BZR 25-K	BZR 35-K	BZR 25-S	BZR 35-S	BZR 25-S-K	BZR 35-S-K
z: 齿牙数量	20	20	20	20	20	20	20	20
m: 模数	2.0	2.5	2.0	2.5	2.0	2.5	2.0	2.5
α: 倾角	19°31'42"	19°31'42"	19°31'42"	19°31'42"	19°31'42"	19°31'42"	19°31'42"	19°31'42"
A: 分度圆到齿轮中心线的距离	21.22	26.53	21.22	26.53	21.22	26.53	21.22	26.53
A': 齿条齿顶到齿轮中心线的距离	19.22	24.03	19.22	24.03	19.22	24.03	19.22	24.03
BT: 齿宽	20	25	20	25	20	25	20	25
DK: 外径	46.44	58.05	46.44	58.05	46.44	58.05	46.44	58.05
DO: 基准直径	42.44	53.05	42.44	53.05	42.44	53.05	42.44	53.05
D1: 轴肩直径	35	40	35	40	32	32	32	32
D2: 通孔/齿轮轴直径	15	15	15	15	25	25	25	25
 LR: 总长	30	37	30	37	140	145	140	145
 LR1: 齿轮轴长度	10	12	10	12	120	120	120	120
LR2: 轴肩长度	-	-	-	-	8	8	8	8
—————————————————————————————————————	-	-	-	-	-	-	43.5	43.5
	-		5	5	-	-	8	8
DPN: 键槽孔的直径	-	-	17.3	17.3	-	-	-	-
LPN: 键槽长度	-	-	-		-	-	25	25
	-		-		-	-	4	4

6.3 配件

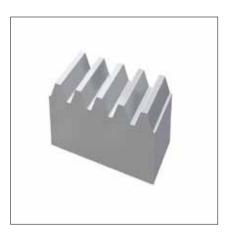
BZ 导轨配件详述

润滑齿轮

润滑齿轮用于齿条的润滑,润滑可通过手动或自动润滑系统进行。

订货编号:

25规格: **BZR 25-L-2.0-16-S** 35规格: **BZR 35-L-2.5-16-S**



润滑齿轮轮轴

轮轴用于连接润滑齿轮。润滑油可以通过内部特殊的油路流到润滑齿轮上。

订货编号:

25规格: **BZR 25-LN** 35规格: **BZR 35-LN**

BZ系统的安装工具

用于BZ导轨系统的校准,它设计成齿条的形式来配合BZ齿轮。在装配过程中,将工具卡入两段对接导轨的接缝处以校准系统。

订货编号:

25规格: **BZM 25-2.0-7-S5** 35规格: **BZM 35-2.5-6-S5**

6.4 订货编号

所有的导轨和滑块应根据以下的订货编号进行订货。 所有的MONORAIL BM滑块都能用于BZ导轨。

第2.1章、4.3章和6.3章分别描述了配件的订货规则。

单件导轨、滑块和配件都使用各自的订货编号。

所有的导轨组件都是未装配,按标准件单独供货的。

如果需要,SCHNEEBERGER也提供装配好的导轨、滑块和配件作为整套系统。具体请参看2.4章的订货指导。

BZ导轨的订货编号

	2x	BZ S	25	-Q6S	-R1	-960	-15	-15	-CN
数量									
导轨									
尺寸									
齿轮精度									
基准面									
导轨长度L3									
始端安装孔中心到最近端头距离L5									
末端安装孔中心到最近端头距离L10									
镀层									

NB

第6.1章到6.3章介绍了所有的型号、具体规格、选项和配件。

第2章描述了所有的选项。

如果可能, L3尺寸最好是标准长度。

这是使用第6.2章中的等式计算得出的: L3=n×L4+L5+L10≤L3max.

BM滑块的订货编号

	4x	BM W	25	-A	-G3	-V1	-R1	-CN	-S10	-LN
数量										
滑块										
尺寸										
滑块类型										
精度										
预紧										
基准面										
镀层										
润滑接口										
润滑的交货条件										

NB

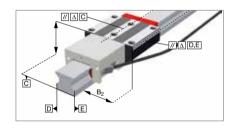
第6.1到6.3章介绍了所有的型号、具体规格、选项和配件。 第2章中描述了所有的选项。

MONORAIL AMS 3B是一款一体式磁栅测量系统,适用于有防护并对系统精度有较 高要求的应用。AMS 3B 基于MONORAIL MR滚柱直线导轨的产品性能,单根长度 可达6m。一体式设计的测量系统适用于结构非常紧凑的应用。

与控制系统相连接口可选不同分辨率的数字接口或1Vpp的模拟接口(信号周期200µm)。 基准标记可设定为间隔50mm或距离编码。

有不同的滑块润滑和密封选项可选,以满足不同的应用要求。扫描头可兼容于所有 规格,更换简便。

MONORAIL AMS 3B 系统的特点



型号、尺寸和选项

AMS 3B 导轨简介	Page 118
AMS 3B 滑块简介	Page 119

7.2 技术参数和选项

AMS 3B 25	Page 120
AMS 3B 35	Page 122
AMS 3B 45	Page 124
AMS 3B 55	Page 126
AMS 3B 65	Page 128

MONORAIL AMS 3B 配件

配件一览表	Page 130
AMS 3B 导轨配件详述	Page 53
AMS 3B 滑块配件详述	Page 56

订单格式

AMSA 3B 导轨订单格式	Page 131
AMSA 3B 滑块订单格式	Page 131
AMSD 3B 导轨订单格式	Page 132
AMSD 3B 滑块订单格式	Page 132

7.1 型号、尺寸和选项

AMS 3B 导轨

AMS 3B 导轨简介

	N 标准	NU 底部安装	C 带盖板		
导轨规格/导轨类型					
25	AMS 3B S 25-N	AMS 3B S 25-NU	AMS 3B S 25-C		
35	AMS 3B S 35-N	AMS 3B S 35-NU	AMS 3B S 35-C		
45	AMS 3B S 45-N	AMS 3B S 45-NU	AMS 3B S 45-C		
55	AMS 3B S 55-N	AMS 3B S 55-NU	AMS 3B S 55-C		
65	AMS 3B S 65-N	AMS 3B S 65-NU	AMS 3B S 65-C		
特点					
顶部螺栓紧固	•		•		
底部螺栓紧固		•			
装配简便		•	•		
单根最长6m	•	•	•		

AMS 3B 导轨的可选选项

精度

----GO 超高精密级

:∼G1 高精密级

□ へ 62 精密级

◯ 63 普通级

直线度 **KC** 标准

镀层 ── CN 无镀层

CH 硬化镀铬

基准面

基准面在下,磁尺在下

─── №1 基准面在上,磁尺在下

R12 基准面在下,磁尺在上

磁化

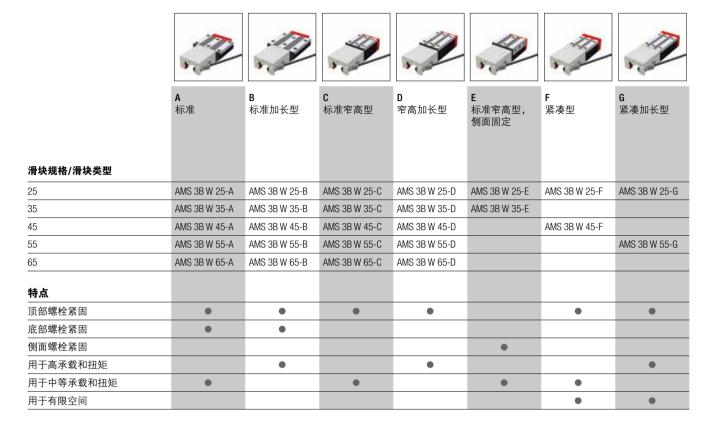
TR50 基准点,间隔50mm

TD20 距离编码,间隔20mm

TD50 距离编码, 间隔50mm

AMS 3B 导轨的可选配件

堵头


盖板

装配工具

71 型号、尺寸和选项

AMS 3B 滑块

AMS 3B 滑块简介

AMS 3B 滑块的可选选项

- **- 60** 超高精密级

■ ~ G1 高精密级

- ○ G2 精密级

← G3 普通级

预紧力

// V1 低

▲ V2 中等

S23 □ 右上侧

S32 🗀 左侧

S42 □ 右侧

▲ V3

基准面

R1 底部

R2 顶部

镀层

____ **CN** 无镀层

mm CH 硬化镀铬

润滑接口

精度

S10▶□ 左侧中央

S20 □ 右侧中央

S21 □ 顶部右侧

S12 □ 左下侧

S22 □ 右下侧

出厂润滑保护

△。 LN 润滑油保护

LG 润滑脂保护

江 充分润滑

接口

| **◯■ TMU** TMU. 模拟式信号. 电缆长度0.3m

TRU TRU,模拟式信号,电缆长度3m

TSU,模拟式信号,电缆长度3m **□■ TMD** TMD, 数字式信号, 电缆长度0.3m

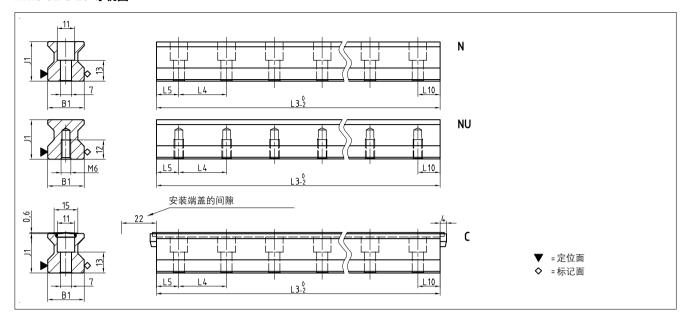
■ TRD TRD,数字式信号,电缆长度3m

-□□ TSD TSD,数字式信号,电缆长度3m

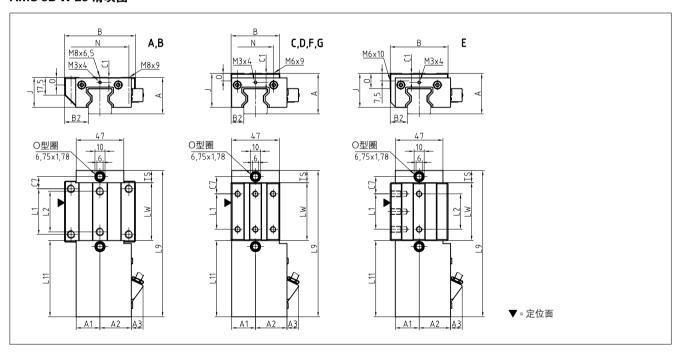
扫描头位置

- P1 右侧顶部

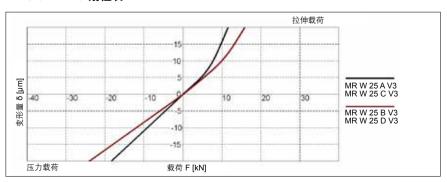
━w·P3 左侧底部

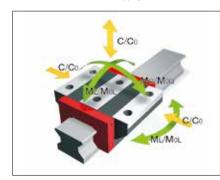

AMS 3B 滑块可选配件

辅助刮屑板 波纹罩


装配轨 润滑连接板 自润滑板 电缆

AMS 3B 25


AMS 3B S 25 导轨图


AMS 3B W 25 滑块图

AMS 3B W 25 刚性表

AMS 3B W 25 额定载荷

AMS 3B 25

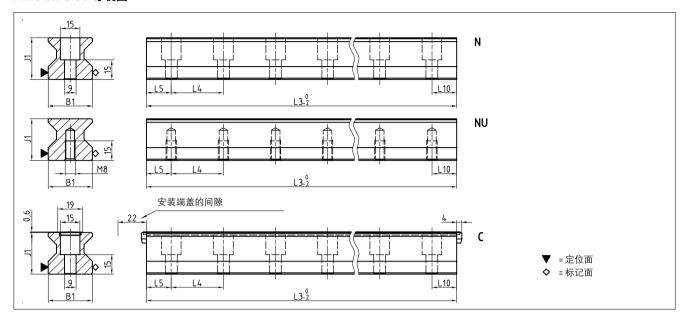
AMS 3B S 25 尺寸

		AMS 3B S 25-N	AMS 3B S 25-NU	AMS 3B S 25-C		
B1:	导轨宽度	23	23	23		
J1:	导轨高度	24.5	24.5	24.5		
L3:	导轨最大长度	6000	6000	3000		
L4:	安装孔孔距	30	30	30		
L5/L10):第一个/最后一个安装孔距端头的距离	13.5	13,5	13.5		
Gew.:	导轨重量(kg/m)	3.4	3.8	3.3		

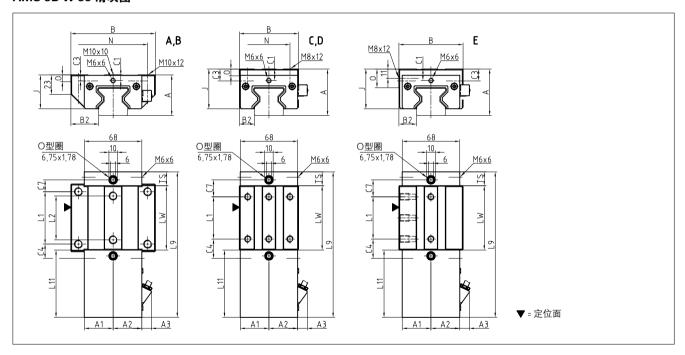
AMS 3B S 25 的可选选项

AMS 3B W 25 尺寸和承载力

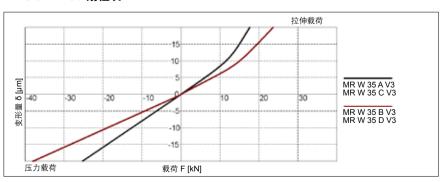
	AMS 3B W 25-A	AMS 3B W 25-B	AMS 3B W 25-C	AMS 3B W 25-D	AMS 3B W 25-E	AM 3B W 25-F	AMS 3B W 25-G
A: 系统高度	36	36	40	40	40	36	36
A1: 中心线到壳体一端的距离	23.5	23.5	23.5	23.5	23.5	23.5	23.5
A2: 中心线到扫描头一端的距离	31	31	31	31	31	31	31
A3: 扫描头凸出尺寸	11.5	11.5	11.5	11.5	11.5	11.5	11.5
B: 滑块宽度	70	70	48	48	57	48	48
B2: 导轨基准面与滑块基准面之间的距离	23.5	23.5	12.5	12.5	17	12.5	12.5
C1: 前端中心润滑孔的位置*	5 / 5.5	5 / 5.5	9 / 9.5	9 / 9.5	9 / 9.5	5 / 5.5	5 / 5.5
C3: 侧面润滑孔的位置	-	-	-	-	-	-	-
C4: 侧面润滑孔的位置	-	-	-	-	-	-	-
C7: 顶部润滑孔的位置	12	23.2	17	20.7	17	17	17
	29.5	29.5	33.5	33.5	33.5	29.5	29.5
L1: 外侧安装孔孔距	45	45	35	50	35	35	50
L2: 中间安装孔孔距	40	40	-	-	35	-	-
L9: 滑块带壳体的总长度	144.2	166.6	144.2	166.6	144.2	144.2	166.6
 L11: 壳体长度	75.2	75.2	75.2	75.2	75.2	75.2	75,2
Lw: 滑块钢体长度	57	79.4	57	79.4	57	57	79.4
N: 侧面安装孔间距	57	57	35	35	-	35	35
0: 基准面高度	7.5	7.5	7.5	7.5	15	7.5	7.5
Ts: 端面板厚度	12	12	12	12	12	12	12
承载力和重量							
CO: 静态承载力 (Nm)	49800	70300	49800	70300	49800	49800	70300
C100: 动态承载力(Nm)	27700	39100	27700	39100	27700	27700	39100
M0Q: 静态径向翻转力矩(Nm)	733	1035	733	1035	733	733	1035
MOL: 静态轴向翻转力矩(Nm)	476	936	476	936	476	476	936
MQ: 动态径向翻转力矩(Nm)	408	576	408	576	408	408	578
ML: 动态轴向扭矩承载力(Nm)	265	521	265	521	265	265	521
Gew: 滑块重量(kg)	1.3	1.5	1.2	1.3	1.3	1.1	1.2

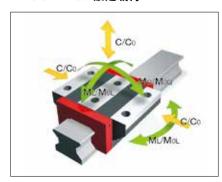

注: *该数值仅对于外部壳体/端面板有效

AMS 3B W 25 的可选选项



AMS 3B 35


AMS 3B S 35 导轨图


AMS 3B W 35 滑块图

AMS 3B W 35 刚性表

AMS 3B W 35 额定载荷

AMS 3B 35

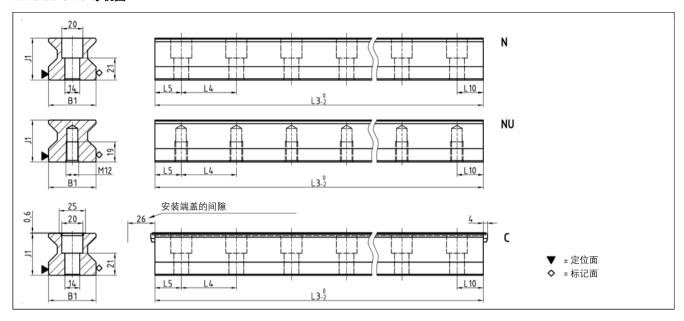
AMS 3B S 35 尺寸

		AMS 3B S 35-N	AMS 3B S 35-NU	AMS 3B S 35-C		
B1:	导轨宽度	34	34	34		
J1:	导轨高度	32	32	32		
L3:	导轨最大长度	6000	6000	6000		
L4:	安装孔孔距	40	40	40		
L5/L10):第一个/最后一个安装孔距端头的距离	18.5	18.5	18.5		
Gew.:	导轨重量 (kg/m)	6.5	7.1	6.3		

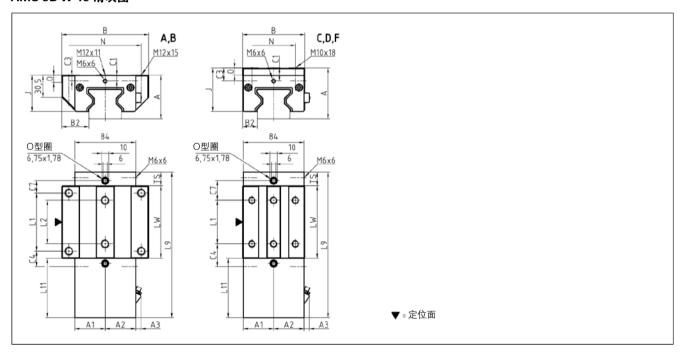
AMS 3B S 35 的可选选项

AMS 3B W 35 尺寸和承载力

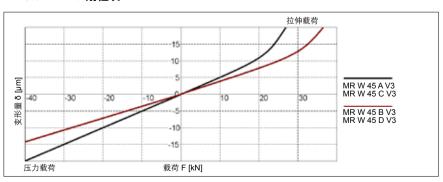
	AMS 3B W 35-A	AMS 3B W 35-B	AMS 3B W 35-C	AMS 3B W 35-D	AMS 3B W 35-E	
	48	48	55	55	55	
A1: 中心线到壳体一端的距离	34	34	34	34	34	
A2: 中心线到扫描头一端的距离	34	34	34	34	34	
A3: 扫描头凸出尺寸	11.5	11.5	11.5	11.5	11.5	
B: 滑块宽度	100	100	70	70	76	
B2: 导轨基准面与滑块基准面之间的距离	33	33	18	18	21	
C1: 前端中心润滑孔的位置*	6.5 / 7	6.5 / 7	13.5 / 14	13.5 / 14	13.5 / 14	
C3: 侧面润滑孔的位置	7	7	14	14	14	
C4: 侧面润滑孔的位置	17	30.5	23	25.5	23	
C7: 顶部润滑孔的位置	14	27.5	20	22.5	20	
J: 滑块高度	40	40	47	47	47	
L1: 外侧安装孔孔距	62	62	50	72	50	
L2: 中间安装孔孔距	52	52	-	-	50	
L9: 滑块带壳体的总长度	172.2	199.2	172.2	199.2	172.2	
L11: 売体长度	79.7	79.7	79.7	79.7	79.7	
Lw: 滑块钢体长度	76	103	76	103	76	
N: 侧面安装孔间距	82	82	50	50	-	
0: 基准面高度	8	8	8	8	22	
Ts: 端面板厚度	16.5	16.5	16.5	16.5	16.5	
承载力和重量						
C0: 静态承载力 (Nm)	93400	128500	93400	128500	93400	
C100: 动态承载力(Nm)	52000	71500	52000	71500	52000	
M0Q: 静态径向翻转力矩(Nm)	2008	2762	2008	2762	2008	
MOL: 静态轴向翻转力矩(Nm)	1189	2214	1189	2214	1189	
MQ: 动态径向翻转力矩(Nm)	1118	1537	1118	1537	1118	
ML: 动态轴向扭矩承载力(Nm)	662	1232	662	1232	662	
Gew: 滑块重量(kg)	2.3	2.9	2.2	2.7	2.3	

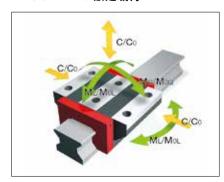

注: *该数值仅对于外部壳体/端面板有效

AMS 3B W 35 的可选选项


G0 G1 G2 G3 V1 V2 V3 R11	R22 CN CH	S10 S20 S11 S21 S12 S12 S12 S12 S12 S12 S12 S12
S22	TMU TRU TSU	TMD TRD TSD P1 P3

AMS 3B 45


AMS 3B S 45 导轨图


AMS 3B W 45 滑块图

AMS 3B W 45 刚性表

AMS 3B W 45 额定载荷

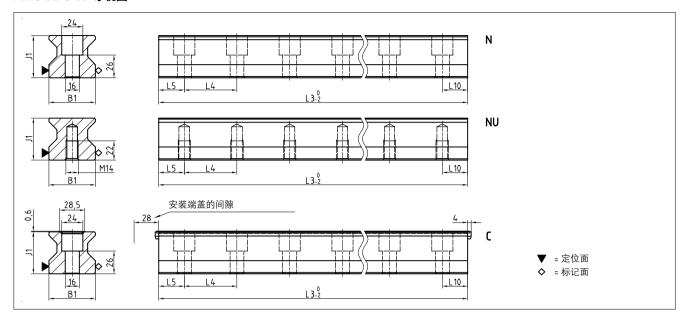
AMS 3B 45

AMS 3B S 45 尺寸

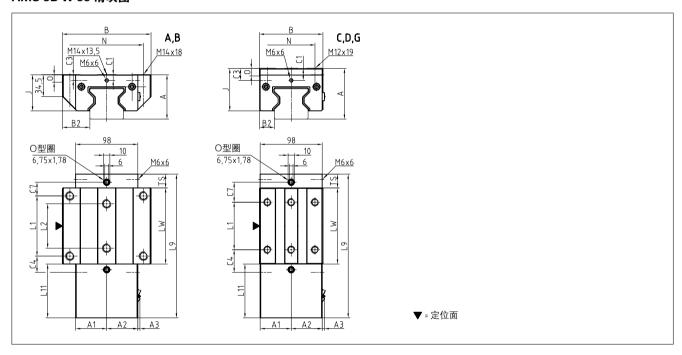
		AMS 3B S 45-N	AMS 3B S 45-NU	AMS 3B S 45-C		
B1:	导轨宽度	45	45	45		
J1:	导轨高度	40	40	40		
L3:	导轨最大长度	6000	6000	6000		
L4:	安装孔孔距	52.5	52.5	52.5		
L5/L10):第一个/最后一个安装孔距端头的距离	25	25	25		
Gew.:	导轨重量(kg/m)	10.8	11.8	10.8		

AMS 3B S 45 的可选选项

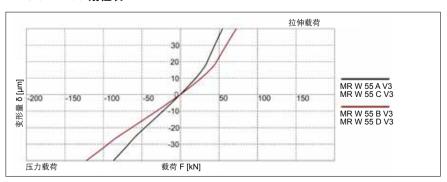
AMS 3B W 45 尺寸和承载力

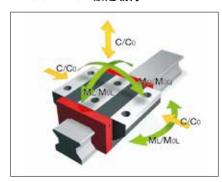

	AMS 3B W 45-A	AMS 3B W 45-B	AMS 3B W 45-C	AMS 3B W 45-D	AMS 3B W 45-F	
	60	60	70	70	60	
A:	42	42	42	42	42	
		_				
A2: 中心线到扫描头一端的距离	42	42	42	42	42	
A3: 扫描头凸出尺寸	7.5	7.5	7.5	7.5	7.5	
B: 滑块宽度	120	120	86	86	86	
B2: 导轨基准面与滑块基准面之间的距离	37.5	37.5	20.5	20.5	20.5	
C1: 前端中心润滑孔的位置*	8	8	18	18	8	
C3: 侧面润滑孔的位置	8	8	18	18	8	
C4: 侧面润滑孔的位置	21.25	38.75	31.25	38.75	31.25	
	17	34.5	27	34.5	27	
J: 滑块高度	50	50	60	60	50	
 L1: 外侧安装孔孔距	80	80	60	80	60	
L2: 中间安装孔孔距	60	60	-	-	-	
L9: 滑块带壳体的总长度	200.7	235.7	200.7	235.7	200.7	
L11: 売体长度	81.9	81.9	81.9	81.9	81.9	
Lw: 滑块钢体长度	100	135	100	135	100	
N: 侧面安装孔间距	100	100	60	60	60	
0: 基准面高度	10	10	10	10	10	
Ts: 端面板厚度	18.8	18.8	18.8	18.8	18.8	
承载力和重量						
CO: 静态承载力 (Nm)	167500	229500	167500	229500	167500	
C100: 动态承载力(Nm)	93400	127800	93400	127800	93400	
MOQ: 静态径向翻转力矩(Nm)	4621	6333	4621	6333	4621	
MOL: 静态轴向翻转力矩(Nm)	2790	5161	2790	5161	2790	
MQ: 动态径向翻转力矩(Nm)	2577	3527	2577	3527	2577	
ML: 动态轴向扭矩承载力(Nm)	1556	2874	1556	2874	1556	
Gew: 滑块重量(kg)	4.0	5.1	3.8	4.8	3.1	

AMS 3B W 45 的可选选项



AMS 3B 55


AMS 3B S 55 导轨图


AMS 3B W 55 滑块图

AMS 3B W 55 刚性表

AMS 3B W 55 额定载荷

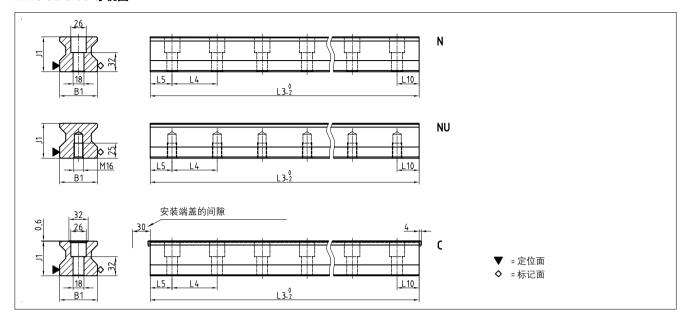
AMS 3B 55

AMS 3B S 55 尺寸

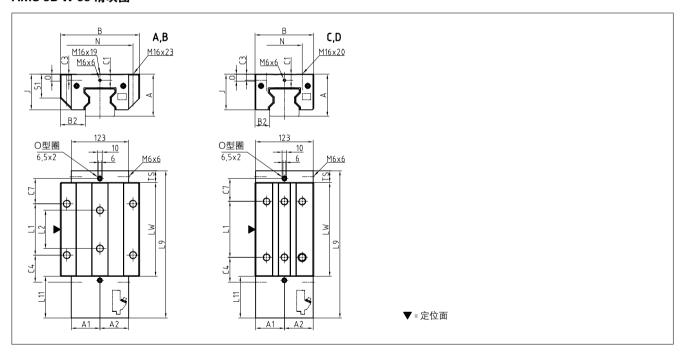
		AMS 3B S 55-N	AMS 3B S 55-NU	AMS 3B S 55-C		
B1:	导轨宽度	53	53	53		
J1:	导轨高度	48	48	48		
L3:	导轨最大长度	6000	6000	6000		
L4:	安装孔孔距	60	60	60		
L5/L10):第一个/最后一个安装孔距端头的距离	28.5	28.5	28.5		
Gew.:	导轨重量 (kg/m)	15.2	16.6	14.9		

AMS 3B S 55 的可选选项

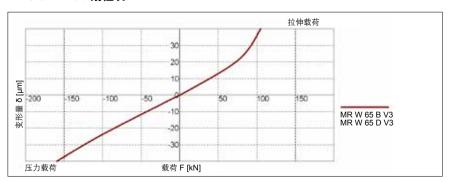
AMS 3B W 55 尺寸和承载力

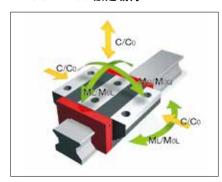

	AMS 3B W 55-A	AMS 3B W 55-B	AMS 3B W 55-C	AMS 3B W 55-D	AMS 3B W 55-G	
A: 系统高度	70	70	80	80	70	
A1: 中心线到壳体一端的距离	49	49	49	49	49	
A2: 中心线到扫描头一端的距离	49	49	49	49	49	
A3: 扫描头凸出尺寸	3.5	3.5	3.5	3.5	3.5	
B: 滑块宽度	140	140	100	100	100	
B2: 导轨基准面与滑块基准面之间的距离	43.5	43.5	23.5	23.5	23.5	
C1: 前端中心润滑孔的位置*	9	9	19	19	9	
C3: 侧面润滑孔的位置	9	9	19	19	9	
C4: 侧面润滑孔的位置	25.75	46.75	35.75	46.75	46.75	
C7: 顶部润滑孔的位置	21.5	42.5	31.5	42.5	42.5	
J: 滑块高度	57	57	67	67	57	
L1: 外侧安装孔孔距	95	95	75	95	95	
L2: 中间安装孔孔距	70	70	-	-	-	
L9: 滑块带壳体的总长度	226.7	268.7	226.7	268.7	268.7	
L11: 売体长度	84.9	84.9	84.9	84.9	84.9	
Lw: 滑块钢体长度	120	162	120	162	162	
N: 侧面安装孔间距	116	116	75	75	75	
0: 基准面高度	12	12	12	12	12	
Ts: 端面板厚度	21.8	21.8	21.8	21.8	21.8	
承载力和重量						
CO: 静态承载力 (Nm)	237000	324000	237000	324000	324000	
C100: 动态承载力(Nm)	131900	180500	131900	180500	180500	
MOQ: 静态径向翻转力矩(Nm)	7771	10624	7771	10624	10624	
MOL: 静态轴向翻转力矩(Nm)	4738	8745	4325	8745	8745	
MQ: 动态径向翻转力矩(Nm)	4325	5919	4325	5919	5919	
ML: 动态轴向扭矩承载力(Nm)	2637	4872	2637	4872	4872	
Gew: 滑块重量(kg)	5.9	7.7	5.5	7.0	5.7	

AMS 3B W 55 的可选选项



AMS 3B 65


AMS 3B S 65 导轨图


AMS 3B W 65 滑块图

AMS 3B W 65 刚性表

AMS 3B W 65 额定载荷

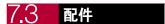
AMS 3B 65

AMS 3B S 65 尺寸

	AMS 3B S 65-N	AMS 3B S 65-NU	AMS 3B S 65-C		
B1: 导轨宽度	63	63	63		
J1: 导轨高度	58	58	58		
L3: 导轨最大长度	6000	6000	6000		
L4: 安装孔孔距	75	75	75		
L5/L10:第一个/最后一个安装孔距端头的距离	36	36	36		
Gew.: 导轨重量 (kg/m)	22.8	24.5	22.5		

AMS 3B S 65 的可选选项

AMS 3B W 65 尺寸和承载力



AMS 3B W 65-A	AMS 3B W 65-B	AMS 3B W 65-C	AMS 3B W 65-D			
90	90	90	90			
61.5	61.5	61.5	61.5			
61.5	61.5	61.5	61.5			
0	0	0	0			
170	170	126	126			
53.5	53.5	31.5	31.5			
13	13	13	13			
13	13	13	13			
31.75	58	51.75	53			
27.75	54	47.75	49			
76	76	76	76			
110	110	70	120			
82	82	-	-			
262.5	315	262.5	315			
89	89	89	89			
148.5	201	148.5	201			
142	142	76	76			
15	15	15	15			
25	25	25	25			
419000	530000	419000	530000			
232000	295000	232000	295000			
16446	20912	16446	20912			
10754	17930	10754	17930			
9154	11640	9154	11640			
5954	9980	5954	9980			
11.6	14.9	9.4	11.8			
	90 61.5 61.5 0 170 53.5 13 13 31.75 27.75 76 110 82 262.5 89 148.5 142 15 25 419000 232000 16446 10754 9154 5954	90 90 61.5 61.5 61.5 61.5 61.5 0 0 0 170 170 170 53.5 53.5 13 13 13 13 13 13 13 13 13 13 13 13 13	90 90 90 61.5 61.5 61.5 61.5 61.5 61.5 0 0 0 170 170 126 53.5 53.5 31.5 13 13 13 13 13 13 31.75 58 51.75 27.75 54 47.75 76 76 76 110 110 70 82 82 - 262.5 315 262.5 89 89 89 148.5 201 148.5 142 142 76 15 15 15 25 25 25 419000 530000 419000 232000 295000 232000 16446 20912 16446 10754 17930 10754 9154 11640 9154 5954 9980 5954	90 90 90 90 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 0 0 0 0 170 170 126 126 53.5 53.5 31.5 31.5 13 13 13 13 13 13 13 13 31.75 58 51.75 53 27.75 54 47.75 49 76 76 76 76 110 110 70 120 82 82 - - 262.5 315 262.5 315 89 89 89 89 148.5 201 148.5 201 142 142 76 76 15 15 15 15 25 25 25 25 419000 530000 232000 295000 232000 295000 232000 295000 16446	90 90 90 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 0 0 0 0 170 170 126 126 53.5 53.5 31.5 31.5 13 13 13 13 13 13 13 13 13 13 13 13 175 58 51.75 53 27.75 54 47.75 49 76 76 76 76 110 110 70 120 82 82 - - 262.5 315 262.5 315 89 89 89 89 148.5 201 148.5 201 142 142 76 76 15 15 15 15 25 25 25 25 419000 530000 232000 295000 232000 295000 232000 <td>90 90 90 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 0 0 0 0 170 170 126 126 53.5 53.5 31.5 31.5 13 13 13 13 13 13 13 13 13.75 58 51.75 53 27.75 54 47.75 49 76 76 76 76 110 110 70 120 82 82 - - 262.5 315 262.5 315 89 89 89 89 148.5 201 148.5 201 142 142 76 76 15 15 15 15 25 25 25 25 419000 530000 232000 295000 16446 20912 16446 20912 10754 17930 <</td>	90 90 90 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5 0 0 0 0 170 170 126 126 53.5 53.5 31.5 31.5 13 13 13 13 13 13 13 13 13.75 58 51.75 53 27.75 54 47.75 49 76 76 76 76 110 110 70 120 82 82 - - 262.5 315 262.5 315 89 89 89 89 148.5 201 148.5 201 142 142 76 76 15 15 15 15 25 25 25 25 419000 530000 232000 295000 16446 20912 16446 20912 10754 17930 <

AMS 3B W 65 的可选选项

AMS 3B 导轨配件一览表

配件	AMS 3B S 25	AMS 3B S 35	AMS 3B S 45	AMS 3B S 55	AMS 3B S 65	
堵头:						
塑料堵头	MRK 25	MRK 35	MRK 45	MRK 55	MRK 65	
铜堵头	MRS 25	MRS 35	MRS 45	MRS 55	MRS 65	
钢堵头	MRZ 25	MRZ 35	MRZ 45	MRZ 55	MRZ 65	
盖板:						
盖板(备件)	MAC 25	MAC 35	MAC 45	MAC 55	MAC 65	
盖板端盖(备件)	EST 25-MAC	EST 35-MAC	EST 45-MAC	EST 55-MAC	EST 65-MAC	
装配工具:						
安装钢堵头的工具 用于MWH的液压缸	MWH 25 MZH	MWH 35 MZH	MWH 45 MZH	MWH 55 MZH	MWH 65 MZH	
安装盖板的工具	MWC 25	MWC 35	MWC 45	MWC 55	MWC 65	

AMS 3B 滑块配件一览表

配件	AMS 3B W 25	AMS 3B W 35	AMS 3B W 45	AMS 3B W 55	AMS 3B W 65	
辅助刮屑板:						
NBR材料辅助刮屑板	ZCN 25	ZCN 35	ZCN 45	ZCN 55	ZCN 65	
Viton橡胶辅助刮屑板	ZCV 25	ZCV 35	ZCV 45	ZCV 55	ZCV 65	
金属刮屑板	ASM 25-A	ASM 35-A	ASM 45-A	ASM 55-A	ASM 65-A	
波纹罩:						
波纹罩	FBM 25	FBM 35	FBM 45	FBM 55	FBM 65	
波纹罩连接板(备件)	ZPL 25	ZPL 35	ZPL 45	ZPL 55	ZPL 65	
波纹罩端面板(备件)	EPL 25	EPL 35	EPL 45	EPL 55	EPL 65	
装配轨:						
装配轨	MRM 25	MRM 35	MRM 45	MRM 55	MRM 65	
自润滑板:						
自润滑板	SPL 25-MR	SPL 35-MR	SPL 45-MR	SPL 55-MR	SPL 65-MR	
端面板:						
端面板(备件)	STP 25-EK	STP 35-EK	STP 45-EK	STP 55-EK	STP 65-EK	
脂润滑油嘴:						
直润滑油嘴	SN 6					
45° 润滑油嘴	SN 6-45					
90° 润滑油嘴	SN 6-90					
M3漏斗式润滑油嘴	SN 3-T	-	-	-	-	
M6漏斗式润滑油嘴	SN 6-T					
用于SN 3-T和SN 6-T的注油枪	SFP-T3	SFP-T3	SFP-T3	SFP-T3	SFP-T3	
油润滑用变径接头:						
直螺旋接头M3	SA 3-D3	-	-	-	-	
M8外圆变径接头	SA 6-RD-M8					
M8外六角接头	-	SA 6-6KT-M8	SA 6-6KT-M8	SA 6-6KT-M8	SA 6-6KT-M8	
G1/8 外六角接头	-	SA 6-6KT-G1/8	SA 6-6KT-G1/8	SA 6-6KT-G1/8	SA 6-6KT-G1/8	
摆角式接头,外接油管直径d=4mm	SV 6-D4					
M6摆角式接头	SV 6-M6					
加长型M6摆角式接头	SV 6-M6-L					
M8摆角式接头 加长型M8摆角式接头	SV 6-M8 SV 6-M8-L					
	3V O-IVIO-L	3V O-IVIO-L	3V U-IVIO-L	3V O-IVIO-L	3V 0-IVIO-L	
电缆:						
12芯连接电缆	KAO 12-X					
12芯连接电缆	KAO 13-X					
12芯延长电缆	KAO 14-X					
12芯延长电缆	KAO 15-X					
12芯连接电缆	KAO 16-X					

所有的导轨和滑块应根据以下的订货编号进行订货。

AMS 3B滑块由滑块、壳体和扫描头组成。

所有的MONORAIL MR 滑块都能用于同规格AMS 3B 导轨。

第2章和3.3章详述了配件的订货编号。

单件导轨、滑块和配件都使用各自的订货编号。

所有的导轨组件都是未装配,按标准件单独供货的。

如果需要,SCHNEEBERGER也提供装配好的导轨、滑块和配件作为整套系统。具体请参看2.4章的订货指导。

AMS 3B 系统的订货编号由两部分组成,如果配模拟接口,订货编号为AMSA,如果配数字接口,订货编号为AMSD。

AMSA 3B 导轨的订货编号

	1x	AMSA 3B S	35	-N	-G1	-KC	-R12	-918	-19	-19	-CN	-TR50
数量												
导轨												
尺寸												
导轨类型												
精度												
直线度												
基准面												
导轨长度L3												
始端安装孔中心到最近端头距离L5												
末端安装孔中心到最近端头距离L10												
镀层												
磁尺												

NB

第7.1章到7.3章介绍了所有的型号、具体规格、选项和配件。

第2章描述了所有的选项。

如果可能,L3尺寸最好是标准长度。

这是使用第7.2章中的等式计算得出的: L3=n×L4+L5+L10≤L3max.

AMSA 3B 滑块的订货编号

	1x	AMSA 3B W	35	-A	-P1	-G1	-V3	-R1	-CN	-S10	-LN	-TSU
数量												
滑块												
尺寸												
滑块类型												
扫描头位置												
精度												
预紧												
基准面												
镀层												
润滑接口												
润滑的交货条件												
接头												

NB

第7.1到7.3章介绍了所有的型号、具体规格、选项和配件。 第2章中描述了所有的选项。

AMSD 3B 导轨的订货编号

	1x	AMSD 3B S	-35	-N	-G1	-KC	-R12	-918	-19	-19	-CN	-TR50
数量												
导轨												
尺寸												
导轨类型												
精度												
直线度												
基准面												
始端安装孔中心到最近端头距离L5												
末端安装孔中心到最近端头距离L10												
镀层												
磁尺				•					•			

NB

第7.1章到7.3章介绍了所有的型号、具体规格、选项和配件。 第2章描述了所有的选项。

如果可能, L3尺寸最好是标准长度。


这是使用第7.2章中的等式计算得出的: L3=n×L4+L5+L10≤L3max.

AMSD 3B 滑块的订货编号

	1x	AMSD 3B W	-35	-A	-P1	-G1	-V3	-R1	-CN	-S10	-LN	-TSD	-050	-80	ZN
数量															
滑块															
尺寸															
滑块类型															
扫描头位置															
精度															
预紧															
基准面															
镀层															
润滑接口															
润滑的交货条件															
接头															
插值率															
输出频率															
基准脉冲															

NB

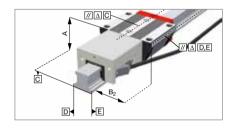
第7.1到7.3章介绍了所有的型号、具体规格、选项和配件。 第2章中描述了所有的选项。

MONORAIL AMS 4B是一款一体式磁栅测量系统,适用于有防护并对系统精度有较高要求的应用。AMS 4B 基于MONORAIL BM滚珠直线导轨的产品性能,单根长度可达6m。一体式设计的测量系统适用于结构非常紧凑的应用。

与控制系统相连接口可选不同分辨率的数字接口或1Vpp的模拟接口(信号周期200μm)。 基准标记可设定为间隔50mm或距离编码。

有不同的滑块润滑和密封选项可选,以满足不同的应用要求。扫描头可兼容于所有规格,更换简便。

MONORAIL AMS 4B 系统的特点



8.1 型号、尺寸和选项

AMS 4B 导轨简介	Page 136
AMS 4B 滑块简介	Page 137

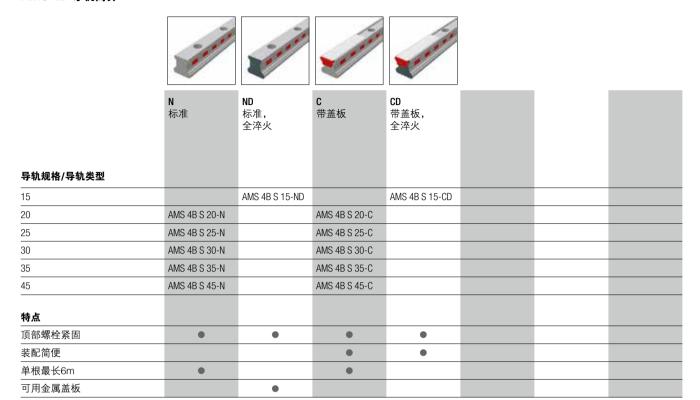
8.2 技术参数和选项

AMS 4B 15	Page 138
AMS 4B 20	Page 140
AMS 4B 25	Page 142
AMS 4B 30	Page 144
AMS 4B 35	Page 146
AMS 4B 45	Page 148

8.3 MONORAIL AMS 4B 配件

配件一览表	Page ⁻	150
AMS 4B 导轨配件详述	Page	79
AMS 4B 滑块配件详述	Page	81

8.4 订单格式



AMSA 4B 导轨订单格式	Page 151
AMSA 4B 滑块订单格式	Page 151
AMSD 4B 导轨订单格式	Page 152
AMSD 4B 滑块订单格式	Page 152

8.1 型号、尺寸和选项

AMS 4B 导轨

AMS 4B 导轨简介

AMS 4B 导轨的可选选项

■ ○ G1 高精密级

□ 1 G2 精密级

↑ G3 普通级

精度 直线度 - **~ GO** 超高精密级

KC 标准

盖板

镀层 ──<mark>CN</mark> 无镀层

CH 硬化镀铬

基准面

基准面在下,磁尺在下

R12 基准面在下,磁尺在上

上 B21 基准面在上,磁尺在下

■ 基准面在上,磁尺在上

磁化

TR50 基准点,间隔50mm

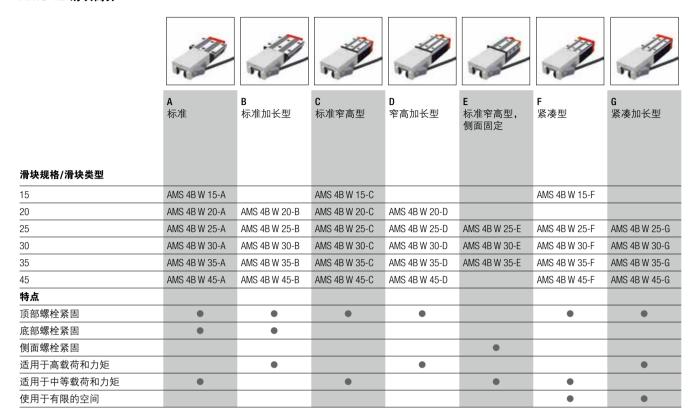
TD20 距离编码, 间隔20mm

TD50 距离编码, 间隔50mm

AMS 4B 导轨的可选配件

堵头

装配工具


ONORAIL AMS 4B

137

型号、尺寸和选项

AMS 4B 滑块

AMS 4B 滑块简介

AMS 4B 滑块的可选选项

- **~~ GO** 超高精密级

■ ○ G1 高精密级

1 ○ G2 精密级

← G3 普通级

预紧力

№ 较低

人 V1 低

水 v2 中等 高

▲ V3

基准面

R1

底部

R2 顶部

镀层

CN 无镀层

----- CH 硬化镀铬

润滑接口

S10 № 左侧中央

S20 □ 右侧中央

S11 € 顶部左侧 S21 □ 顶部右侧

S12 □ 左下侧

S22 □ 右下侧

S42 口 右侧

S32 🗀 左侧

S23 □ 右上侧

出厂润滑保护

△。LN 润滑油保护

LG 润滑脂保护

江 充分润滑

接头

◯■ TMU TMU, 模拟式信号, 电缆长度0.3m

TRU TRU, 模拟式信号, 电缆长度3m

▼ TSU, 模拟式信号, 电缆长度3m

TMD TMD, 数字式信号, 电缆长度0.3m

■ TRD TRD, 数字式信号, 电缆长度3m

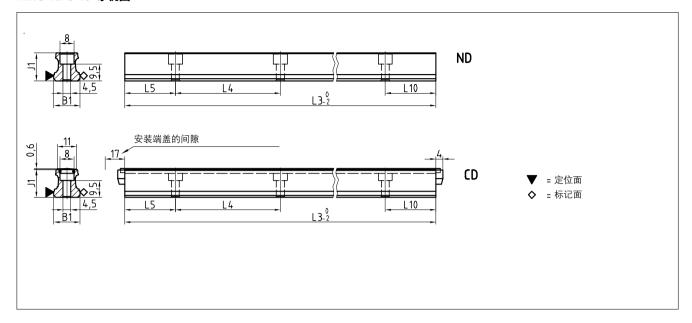
TSD,数字式信号,电缆长度3m

扫描头位置

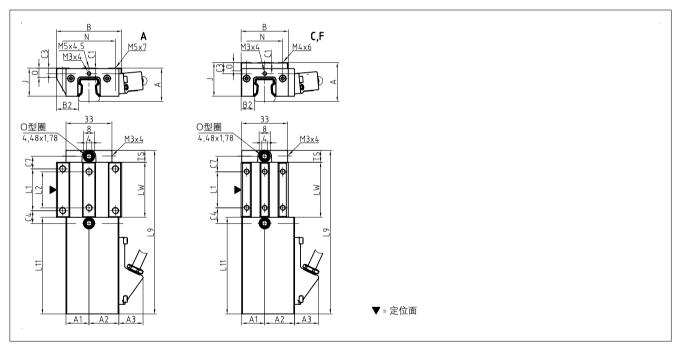
□ 右侧顶部

上 P3 左侧底部

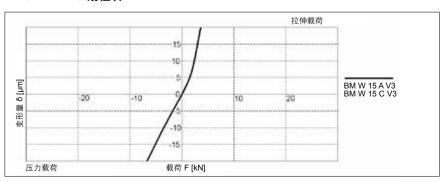
AMS 4B 滑块可选配件

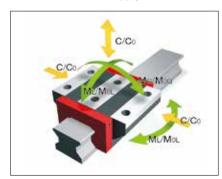

辅助刮屑板 端面板

波纹罩 润滑油嘴 装配轨 润滑连接板


自润滑板 电缆

AMS 4B 15


AMS 4B S 15 导轨图


AMS 4B W 15 滑块图

AMS 4B W 15 刚性表

AMS 4B W 15 额定载荷

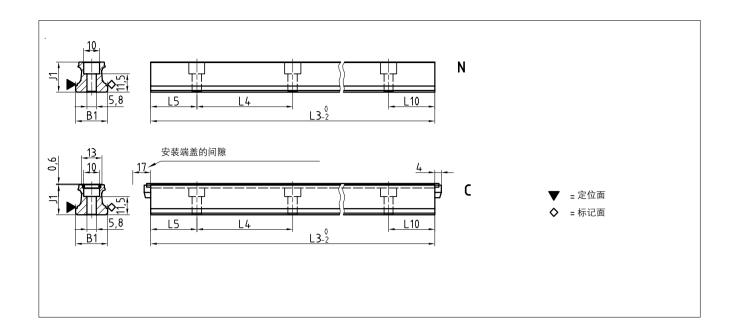
AMS 4B 15

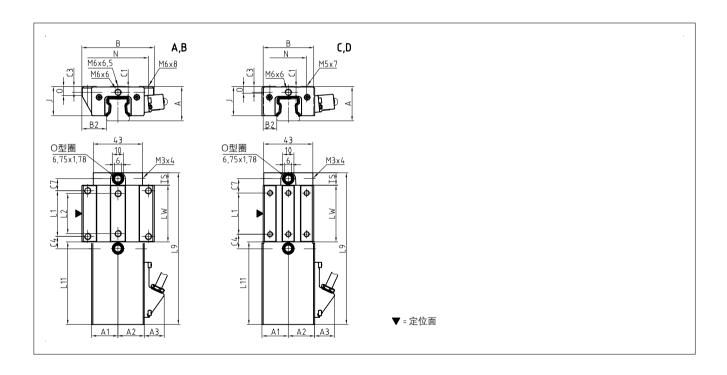
AMS 4B S 15 尺寸

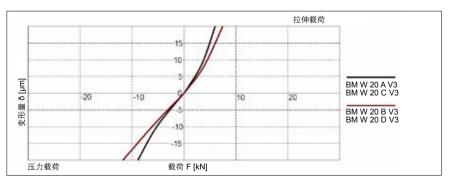
		AMS 4B S 15-ND	AMS 4B S 15-CD			
B1:	导轨宽度	15	15			
J1:	导轨高度	15.7	15.7			
L3:	导轨最大长度	1500	1500			
L4:	安装孔孔距	60	60			
L5/L10):第一个/最后一个安装孔距端头的距离	28.5	28.5			
Gew.:	导轨重量(kg/m)	1.4	1.3			

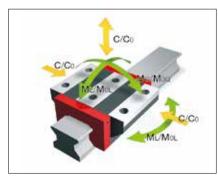
AMS 4B S 15 的可选选项

AMS 4B W 15 尺寸和承载力






	AMS 4B W 15-A	AMS 4B W 15-C	AMS 4B W 15-F		
A: 系统高度	24	28	24		
A1: 中心线到壳体一端的距离	16.5	16.5	16.5		
A2: 中心线到扫描头一端的距离	21.5	21.5	21.5		
A3: 扫描头凸出尺寸	17.5	17.5	17.5		
B: 滑块宽度	47	34	34		
B2: 导轨基准面与滑块基准面之间的距离	16	9.5	9.5		
C1: 前端中心润滑孔的位置*	4	8	4		
C3: 侧面润滑孔的位置	3.7	7.7	3.7		
C4: 侧面润滑孔的位置	9.3	11.3	11.3		
C7: 顶部润滑孔的位置	9.05	11.05	11.05		
J: 滑块高度	20.2	24.2	20.2		
L1: 外侧安装孔孔距	30	26	26		
L2: 中间安装孔孔距	26	-	-		
L9: 滑块带壳体的总长度	117.6	117.6	117.6		
L11: 売体长度	69.5	69.5	69.5		
Lw: 滑块钢体长度	39.6	39.6	39.6		
N: 侧面安装孔间距	38	26	26		
0: 基准面高度	7	6	5.5		
Ts: 端面板厚度	8.5	8.5	8.5		
承载力和重量					
CO: 静态承载力 (Nm)	19600	19600	19600		
C100: 动态承载力(Nm)	9000	9000	9000		
MOQ: 静态径向翻转力矩(Nm)	181	181	181		
MOL: 静态轴向翻转力矩(Nm)	146	146	146		
MQ: 动态径向翻转力矩(Nm)	83	83	83		
ML: 动态轴向扭矩承载力(Nm)	67	67	67		
Gew: 滑块重量(kg)	0.8	0.8	0.7		


AMS 4B W 15 的可选选项

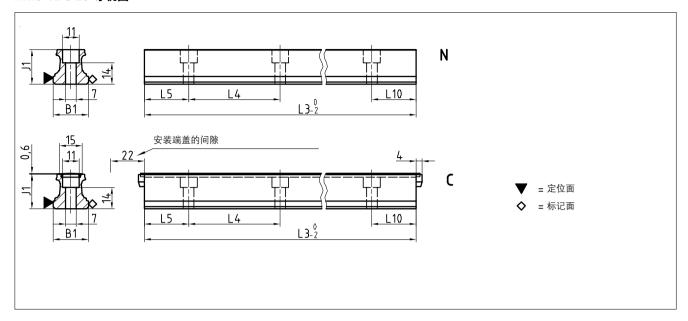
AMS 4B 20

AMS 4B S 20 尺寸

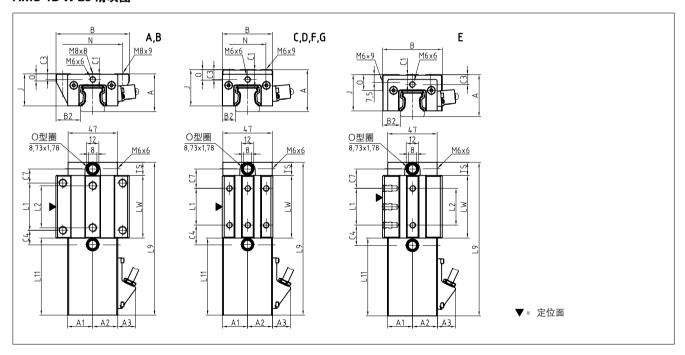
		AMS 4B S 20-N	AMS 4B S 20-C			
B1:	导轨宽度	20	20			
J1:	导轨高度	19	19			
L3:	导轨最大长度	3000	3000			
L4:	安装孔孔距	60	60			
L5/L10):第一个/最后一个安装孔距端头的距离	28.5	28.5			
Gew.:	导轨重量(kg/m)	2.2	2.1			

AMS 4B S 20 的可选选项

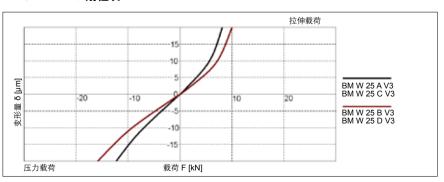
AMS 4B W 20 尺寸和承载力

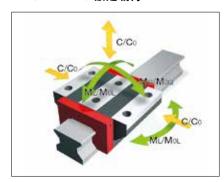

	AMS 4B W 20-A	AMS 4B W 20-B	AMS 4B W 20-C	AMS 4B W 20-D		
A: 系统高度	30	30	30	30		
A1: 中心线到壳体一端的距离	23.9	23.9	23.9	23.9		
A2: 中心线到扫描头一端的距离	23.9	23.9	23.9	23.9		
A3: 扫描头凸出尺寸	17.5	17.5	17.5	17.5		
B: 滑块宽度	63	63	44	44		
B2: 导轨基准面与滑块基准面之间的距离	21.5	21.5	12	12		
C1: 前端中心润滑孔的位置*	5.2	5.2	5.2	5.2		
C3: 侧面润滑孔的位置	4.6	4.6	4.6	4.6		
C4: 侧面润滑孔的位置	10.75	18.75	12.75	13.75		
C7: 顶部润滑孔的位置	10.25	18.25	12.25	13.25		
J: 滑块高度	25.5	25.5	25.5	25.5		
L1: 外侧安装孔孔距	40	40	36	50		
L2: 中间安装孔孔距	35	35	-	-		
L9: 滑块带壳体的总长度	132.5	148.5	132.5	148.5		
L11: 壳体长度	72	72	72	72		
Lw: 滑块钢体长度	49.5	65.5	49.5	65.5		
N: 侧面安装孔间距	53	53	32	32		
0: 基准面高度	8	8	6	6		
Ts: 端面板厚度	11	11	11	11		
承载力和重量						
CO: 静态承载力 (Nm)	31400	41100	31400	41100		
C100: 动态承载力(Nm)	14400	17400	14400	17400		
MOQ: 静态径向翻转力矩(Nm)	373	490	373	490		
MOL: 静态轴向翻转力矩(Nm)	292	495	292	495		
MQ: 动态径向翻转力矩(Nm)	171	206	171	206		
ML: 动态轴向扭矩承载力(Nm)	134	208	134	208		
Gew: 滑块重量(kg)	1.0	1.2	0.9	1.0		

AMS 4B W 20 的可选选项



AMS 4B 25


AMS 4B S 25 导轨图


AMS 4B W 25 滑块图

AMS 4B W 25 刚性表

AMS 4B W 25 额定载荷

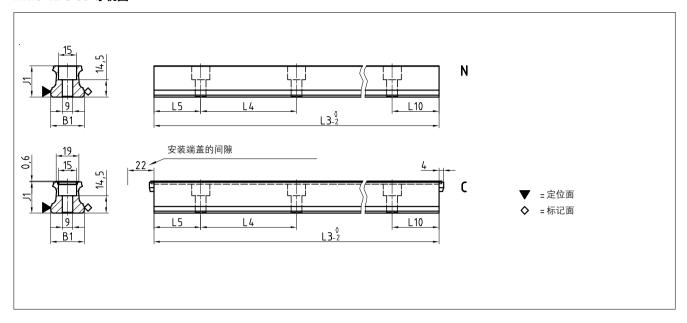
AMS 4B 25

AMS 4B S 25 尺寸

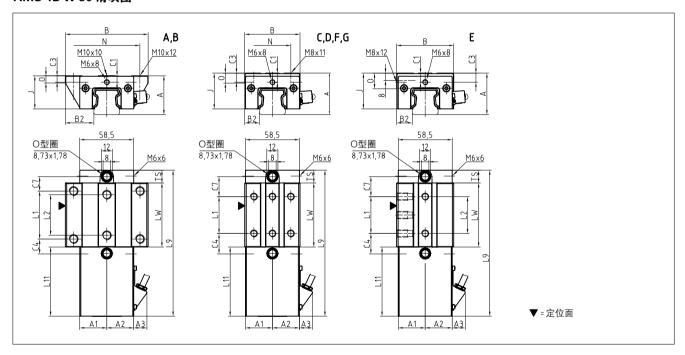
		AMS 4B S 25-N	AMS 4B S 25-C			
B1:	导轨宽度	23	23			
J1:	导轨高度	22.7	22.7			
L3:	导轨最大长度	6000	3000			
L4:	安装孔孔距	60	60			
L5/L10):第一个/最后一个安装孔距端头的距离	28.5	28.5			
Gew.:	导轨重量(kg/m)	3.0	2.8			

AMS 4B S 25 的可选选项

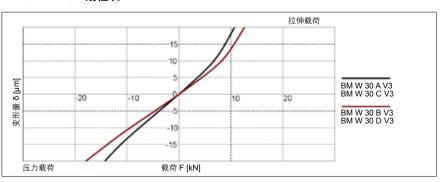
AMS 4B W 25 尺寸和承载力

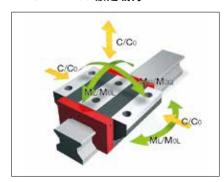

	AMS 4B W 25-A	AMS 4B W 25-B	AMS 4B W 25-C	AMS 4B W 25-D	AMS 4B W 25-E	AMS 4B W 25-F	AMS 4B W 25-G
A: 系统高度	36	36	40	40	40	36	36
A1: 中心线到壳体一端的距离	23.9	23.9	23.9	23.9	23.9	23.9	23.9
A2: 中心线到扫描头一端的距离	23.9	23.9	23.9	23.9	23.9	23.9	23.9
A3: 扫描头凸出尺寸	17.3	17.3	17.3	17.3	17.3	17.3	17.3
B: 滑块宽度	70	70	48	48	57	48	48
B2: 导轨基准面与滑块基准面之间的距离	23.5	23.5	12.5	12.5	17	12.5	12.5
C1: 前端中心润滑孔的位置*	5.5	5.5	9.5	9.5	9.5	5.5	5.5
C3: 侧面润滑孔的位置	5.5	5.5	9.5	9.5	9.5	5.5	5.5
C4: 侧面润滑孔的位置	13.75	23.25	18.75	20.75	18.75	18.75	20.75
C7: 顶部润滑孔的位置	13.5	23	18.5	20.5	18.5	18.5	20.5
J: 滑块高度	30.5	30.5	34.5	34.5	34.5	30.5	30.5
L1: 外侧安装孔孔距	45	45	35	50	35	35	50
L2: 中间安装孔孔距	40	40	-	-	-	-	-
L9: 滑块带壳体的总长度	145.5	164.5	145.5	164.5	145.5	145.5	164.5
L11: 売体长度	73.5	73.5	73.5	73.5	73.5	73.5	73.5
Lw: 滑块钢体长度	59.5	78.5	59.5	78.5	59.5	59.5	78.5
N: 侧面安装孔间距	57	57	35	35	-	35	35
0: 基准面高度	7	7	11	11	15	7.1	7.1
Ts: 端面板厚度	12.5	12.5	12.5	12.5	12.5	12.5	12.5
承载力和重量							
CO: 静态承载力 (Nm)	46100	60300	46100	60300	46100	46100	60300
C100: 动态承载力(Nm)	21100	25500	21100	25500	21100	21100	25500
M0Q: 静态径向翻转力矩(Nm)	631	825	631	825	631	631	825
MOL: 静态轴向翻转力矩(Nm)	513	863	513	863	513	513	863
MQ: 动态径向翻转力矩(Nm)	289	349	289	349	289	289	349
ML: 动态轴向扭矩承载力(Nm)	235	365	235	365	235	235	365
Gew: 滑块重量(kg)	1.3	1.5	1.2	1.4	1.3	1.1	1.3

AMS 4B W 25 的可选选项



AMS 4B 30


AMS 4B S 30 导轨图


AMS 4B W 30 滑块图

AMS 4B W 30 刚性表

AMS 4B W 30 额定载荷

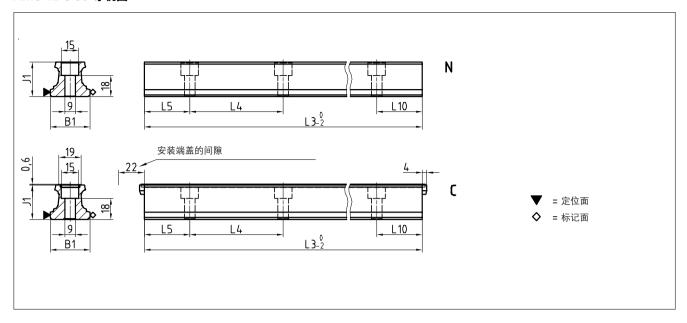
AMS 4B 30

AMS 4B S 30 尺寸

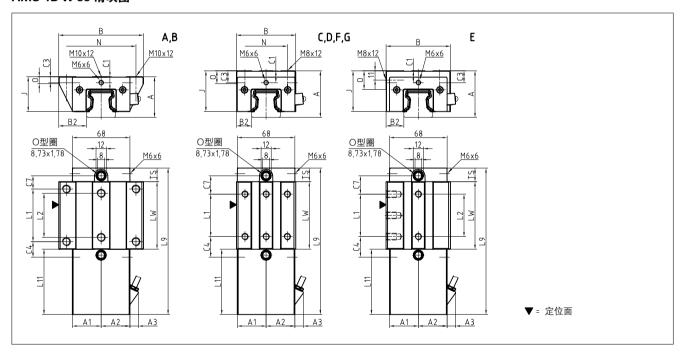
		AMS 4B S 30-N	AMS 4B S 30-C			
B1:	导轨宽度	28	28			
J1:	导轨高度	26	26			
L3:	导轨最大长度	6000	6000			
L4:	安装孔孔距	80	80			
L5/L10):第一个/最后一个安装孔距端头的距离	38.5	38.5			
Gew.:	导轨重量(kg/m)	4.3	4.1			

AMS 4B S 30 的可选选项

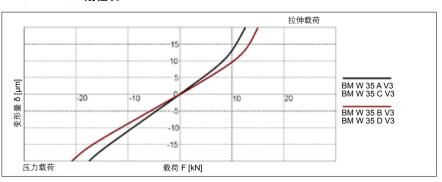
AMS 4B W 30 尺寸和承载力

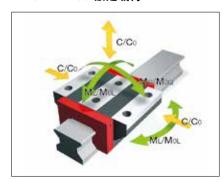

	AMS 4B W 30-A	AMS 4B W 30-B	AMS 4B W 30-C	AMS 4B W 30-D	AMS 4B W 30-E	AMS 4B W 30-F	AMS 4B W 30-G
A: 系统高度	42	42	45	45	45	42	42
A1: 中心线到壳体一端的距离	29.3	29.3	29.3	29.3	29.3	29.3	29.3
A2: 中心线到扫描头一端的距离	29.3	29.3	29.3	29.3	29.3	29.3	29.3
A3: 扫描头凸出尺寸	14.4	14.4	14.4	14.4	14.4	14.4	14.4
B: 滑块宽度	90	90	60	60	62	60	60
B2: 导轨基准面与滑块基准面之间的距离	31	31	16	16	17	16	16
C1: 前端中心润滑孔的位置*	7	7	10	10	10	7	7
C3: 侧面润滑孔的位置	6	6	9	9	9	6	6
C4: 侧面润滑孔的位置	16.2	27.2	22.2	23.2	22.2	22.2	23.2
C7: 顶部润滑孔的位置	15.7	26.7	21.7	22.7	21.7	21.7	22.7
	35.9	35.9	38.9	38.9	38.9	35.9	35.9
	52	52	40	60	40	40	60
L2: 中间安装孔孔距	44	44	-	-	40	-	-
L9: 滑块带壳体的总长度	158.4	180.4	158.4	180.4	158.4	158.4	180.4
	75	75	75	75	75	75	75
Lw: 滑块钢体长度	69.4	91.4	69.4	91.4	69.4	69.4	91.4
N: 侧面安装孔间距	72	72	40	40	-	40	40
0: 基准面高度	7.8	7.8	11	11	17	8	8
Ts: 端面板厚度	14	14	14	14	14	14	14
承载力和重量							
 CO: 静态承载力 (Nm)	63700	83300	63700	83300	63700	63700	83300
C100: 动态承载力(Nm)	29200	35300	29200	35300	29200	29200	35300
M0Q: 静态径向翻转力矩(Nm)	1084	1414	1084	1414	1084	1084	1414
MOL: 静态轴向翻转力矩(Nm)	829	1390	829	1390	829	829	1390
MQ: 动态径向翻转力矩(Nm)	497	599	497	599	497	497	599
ML: 动态轴向扭矩承载力(Nm)	380	589	380	589	380	380	589
Gew: 滑块重量(kg)	1.8	2.2	1.7	1.9	1.7	1.6	1.8

AMS 4B W 30 的可选选项


GO G1	R1 R2 R2 R1 S10 R1 S10 R1 S20 R1 S20 R1 S20 R1 S20 R1 S20 R1 S20 R1 R2 R2 R2 R2 R1 R2 R2 R2 R1 R3 R2 R3
S12 🔲 S22 🔲	S13 S23 S32 S42 S42 S0

AMS 4B 35


AMS 4B S 35 导轨图


AMS 4B W 35 滑块图

AMS 4B W 35 刚性表

AMS 4B W 35 额定载荷

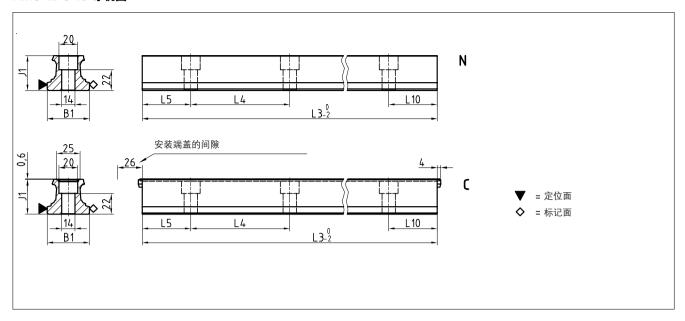
AMS 4B 35

AMS 4B S 35 尺寸

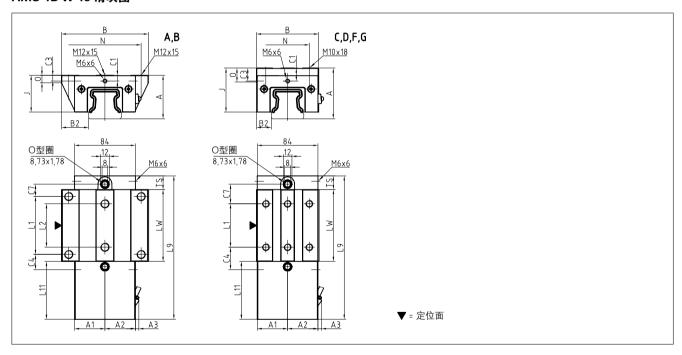
		AMS 4B S 35-N	AMS 4B S 35-C			
B1:	导轨宽度	34	34			
J1:	导轨高度	29.5	29.5			
L3:	导轨最大长度	6000	6000			
L4:	安装孔孔距	80	80			
L5/L10	D:第一个/最后一个安装孔距端头的距离	38.5	38.5			
Gew.:	导轨重量 (kg/m)	5.4	5.2			

AMS 4B S 35 的可选选项

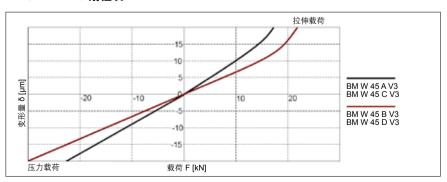
AMS 4B W 35 尺寸和承载力

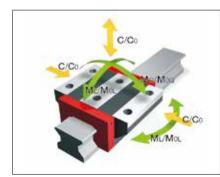

		5.5	5.5	5.5	5.5	5.5	
	AMS 4B W 35-A	AMS 4B W 35-B	AMS 4B W 35-C	AMS 4B W 35-D	AMS 4B W 35-E	AMS 4B W 35-F	AMS 4B W 35-G
A: 系统高度	48	48	55	55	55	48	48
A1: 中心线到壳体一端的距离	34	34	34	34	34	34	34
A2: 中心线到扫描头一端的距离	34	34	34	34	34	34	34
A3: 扫描头凸出尺寸	10.1	10.1	10.1	10.1	10.1	10.1	10.1
B: 滑块宽度	100	100	70	70	76	70	70
B2: 导轨基准面与滑块基准面之间的距离	33	33	18	18	21	18	18
C1: 前端中心润滑孔的位置*	7	7	14	14	14	7	7
C3: 侧面润滑孔的位置	6.5	6.5	13.5	13.5	13.5	6.5	6.5
C4: 侧面润滑孔的位置	18.3	31.05	24.3	26.05	24.3	24.3	26.05
C7: 顶部润滑孔的位置	15.8	28.55	21.8	23.55	21.8	21.8	23.55
J: 滑块高度	41	41	48	48	48	41	41
L1: 外侧安装孔孔距	62	62	50	72	50	50	72
L2: 中间安装孔孔距	52	52	-	-	50	-	-
L9: 滑块带壳体的总长度	172.6	198.1	172.6	198.1	172.6	172.6	198.1
L11: 売体长度	77	77	77	77	77	77	77
Lw: 滑块钢体长度	79.6	105.1	79.6	105.1	79.6	79.6	105.1
N: 侧面安装孔间距	82	82	50	50	-	50	50
0: 基准面高度	8	8	15	15	22	8	8
Ts: 端面板厚度	16	16	16	16	16	16	16
承载力和重量							
CO: 静态承载力 (Nm)	84400	110300	84400	110300	84400	84400	110300
C100: 动态承载力(Nm)	38700	46700	38700	46700	38700	38700	46700
MOQ: 静态径向翻转力矩(Nm)	1566	2048	1566	2048	1566	1566	2048
MOL: 静态轴向翻转力矩(Nm)	1252	2104	1252	2104	1252	1252	2104
MQ: 动态径向翻转力矩(Nm)	718	867	718	867	718	718	867
ML: 动态轴向扭矩承载力(Nm)	574	891	574	891	574	574	891
Gew: 滑块重量(kg)	2.5	3.0	2.5	3.0	2.5	2.2	2.5

AMS 4B W 35 的可选选项



AMS 4B 45


AMS 4B S 45 导轨图


AMS 4B W 45 滑块图

AMS 4B W 45 刚性表

AMS 4B W 45 额定载荷

AMS 4B 45

AMS 4B S 45 尺寸

		AMS 4B S 45-N	AMS 4B S 45-C			
B1:	导轨宽度	45	45			
J1:	导轨高度	37	37			
L3:	导轨最大长度	6000	6000			
L4:	安装孔孔距	105	105			
L5/L10):第一个/最后一个安装孔距端头的距离	51	51			
Gew.:	导轨重量(kg/m)	8.8	8.6			

AMS 4B S 45 的可选选项

AMS 4B W 45 尺寸和承载力

	AMS 4B W 45-A	AMS 4B W 45-B	AMS 4B W 45-C	AMS 4B W 45-D	AMS 4B W 45-F	AMS 4B W 45-G	
A: 系统高度	60	60	70	70	60	60	
A1: 中心线到壳体一端的距离	42	42	42	42	42	42	
A2: 中心线到扫描头一端的距离	42	42	42	42	42	42	
A3: 扫描头凸出尺寸	5	5	5	5	5	5	
B: 滑块宽度	120	120	86	86	86	86	
B2: 导轨基准面与滑块基准面之间的距离	37.5	37.5	20.5	20.5	20.5	20.5	
C1: 前端中心润滑孔的位置*	8	8	18	18	8	8	
C3: 侧面润滑孔的位置	8	8	18	18	8	8	
C4: 侧面润滑孔的位置	21.05	36.8	31.05	36.8	31.05	36.8	
C7: 顶部润滑孔的位置	17.05	32.8	27.05	32.8	27.05	32.8	
J: 滑块高度	50.8	50.8	60.8	60.8	50.8	50.8	
L1: 外侧安装孔孔距	80	80	60	80	60	80	
L2: 中间安装孔孔距	60	60	-	-	-	-	
L9: 滑块带壳体的总长度	198.1	229.6	198.1	229.6	198.1	229.6	
L11: 壳体长度	80	80	80	80	80	80	
Lw: 滑块钢体长度	99.1	130.6	99.1	130.6	99.1	130.6	
N: 侧面安装孔间距	100	100	60	60	60	60	
0: 基准面高度	10	10	19	19	10	10	
Ts: 端面板厚度	19	19	19	19	19	19	
承载力和重量							
CO: 静态承载力 (Nm)	134800	176300	134800	176300	134800	176300	
C100: 动态承载力(Nm)	61900	74700	61900	74700	61900	74700	
MOQ: 静态径向翻转力矩(Nm)	3193	4175	3193	4175	3193	4175	
MOL: 静态轴向翻转力矩(Nm)	2498	4199	2498	4199	2498	4199	
MQ: 动态径向翻转力矩(Nm)	1466	1769	1466	1769	1466	1769	
ML: 动态轴向扭矩承载力(Nm)	1147	1779	1147	1779	1147	1779	
Gew: 滑块重量(kg)	4.1	5.1	4.2	5.2	3.6	4.4	

AMS 4B W 45 的可选选项

	- GO : -~	G1 C2	G3	▶ V0	√ √ V1	△ V 2	⊿ √ \ V 3		R1 R2	CN	CH	S10 ►	S20 🗀	S11 🗐	S21 📑
S1	2 🔲 S22	□ S13 □	S23 [S32 🔲	S42 🔲	∆ _o LN	LG	\[\sum_{\chi}\]	LV NI	J TRU	TSU	TMD	TRD	TSD	P1

AMS 4B 导轨配件一览表

配件	AMS 4B S 15	AMS 4B S 20	AMS 4B S 25	AMS 4B S 30	AMS 4B S 35	AMS 4B S 45
堵头:						
塑料堵头	BRK 15	BRK 20	BRK 25	BRK 30	BRK 35	BRK 45
盖板:						
盖板(备件) 盖板端盖(备件)	BAC 15 EST 15-BAC	BAC 20 EST 20-BAC	BAC 25 EST 25-BAC	BAC 30 EST 30-BAC	BAC 35 EST 35-BAC	BAC 45 EST 45-BAC
装配工具:						
安装盖板的工具	BWC 15	BWC 20	BWC 25	BWC 30	BWC 35	BWC 45

AMS 4B 滑块配件一览表

配件	AMS 4B W 15	AMS 4B W 20	AMS 4B W 25	AMS 4B W 30	AMS 4B W 35	AMS 4B W 45	
辅助刮屑板:							
NBR材料辅助刮屑板	ZBN 15	ZBN 20	ZBN 25	ZBN 30	ZBN 35	ZBN 45	
Viton橡胶辅助刮屑板	ZBV 15	ZBV 20	ZBV 25	ZBV 30	ZBV 35	ZBV 45	
金属刮屑板	ABM 15-A	ABM 20-A	ABM 25-A	ABM 30-A	ABM 35-A	ABM 45-A	
波纹罩:							
波纹罩	-	FBB 20	FBB 25	FBB 30	FBB 35	FBB 45	
波纹罩连接板(备件)	-	ZPB 20	ZPB 25	ZPB 30	ZPB 35	ZPB 45	
波纹罩端面板(备件)	-	EPB 20	EPB 25	EPB 30	EPB 35	EPB 45	
装配轨	MBM 15	MBM 20	MBM 25	MBM 30	MBM 35	MBM 45	
自润滑板:							
自润滑板	SPL 15-BM	SPL 20-BM	SPL 25-BM	SPL 30-BM	SPL 35-BM	SPL 45-BM	
端面板:							
端面板的交叉刮削板	QAS 15-STB	QAS 20-STB	QAS 25-STB	QAS 30-STB	QAS 35-STB	QAS 45-STB	
脂润滑油嘴:							
直润滑油嘴	-	SN 6					
45° 润滑油嘴	-	SN 6-45					
90° 润滑油嘴	-	SN 6-90					
M3漏斗式润滑油嘴	SN 3-T	SN 3-T	-	-	-	-	
M6漏斗式润滑油嘴	-	SN 6-T					
用于SN 3-T和SN 6-T的注油枪	SFP-T3	SFP-T3	SFP-T3	SFP-T3	SFP-T3	SFP-T3	
油润滑用变径接头:							
直螺旋接头M3	SA 3-D3	SA 3-D3	-	-	-	-	
M8外圆变径接头	-	SA 6-RD-M8					
M8外六角接头	-	-	-	SA 6-6KT-M8	SA 6-6KT-M8	SA 6-6KT-M8	
G1/8 外六角接头	-	-	-	SA 6-6KT-G1/8	SA 6-6KT-G1/8	SA 6-6KT-G1/8	
摆角式接头,外接油管直径d=4mm	-	SV 6-D4					
M6摆角式接头	-	SV 6-M6					
加长型M6摆角式接头	-	SV 6-M6-L					
M8摆角式接头 加长型M8摆角式接头	-	SV 6-M8 SV 6-M8-L					
电缆:		3V 0-IVIO-L	37 0-IVIO-L	3V 0-IVIO-L	3V 0-IVIO-L	OV O-IVIO-L	
	1/40 40 V	V40 40 V	V40.40.V	V40 40 V	1/40 40 V	V40 40 V	
12芯连接电缆	KAO 12-X						
12芯连接电缆	KAO 13-X	KAO 14 V					
12芯连接电缆	KAO 14-X						
12芯连接电缆 12芯连接电缆	KAO 15-X KAO 16-X						
12心灶汝忠纵	IVAU IU-A	IVAU 10-A	IVAU 10-V	IVAU IU-A	IVAU IU-A	IVAU 10-A	

所有的导轨和滑块应根据以下的订货编号进行订货。

AMS 4B滑块由滑块、壳体和扫描头组成。

所有的MONORAIL BM 滑块都能用于同规格AMS 4B 导轨。

第2章和4.3章详述了配件的订货编号。

单件导轨、滑块和配件都使用各自的订货编号。

所有的导轨组件都是未装配,按标准件单独供货的。

如果需要,SCHNEEBERGER也提供装配好的导轨、滑块和配件作为整套系统。具体请参看2.4章的订货指导。

AMS 4B 系统的订货编号由两部分组成,如果配模拟接口,订货编号为AMSA,如果配数字接口,订货编号为AMSD。

AMSA 4B 导轨的订货编号

	1x	AMSA 4B S	25	-N	-G3	-KC	-R12	-958	-29	-29	-CN	-TR50
数量												
导轨												
尺寸												
导轨类型												
精度												
直线度												
基准面												
导轨长度L3												
始端安装孔中心到最近端头距离L5												
末端安装孔中心到最近端头距离L10												
镀层												
磁尺												

NB

第8.1章到8.3章介绍了所有的型号、具体规格、选项和配件。

第2章描述了所有的选项。

如果可能,L3尺寸最好是标准长度。

这是使用第8.2章中的等式计算得出的: L3=n×L4+L5+L10≤L3max.

AMSA 4B 滑块的订货编号

	1x	AMSA 4B W	25	-A	-P1	-G3	-V1	-R1	-CN	-S10	-LN	-TSU
数量												
滑块												
尺寸												
滑块类型												
扫描头位置												
精度												
预紧												
基准面												
镀层												
润滑接口												
润滑的交货条件												
接头												

NB

第8.1到8.3章介绍了所有的型号、具体规格、选项和配件。 第2章中描述了所有的选项。

AMSD 4B 导轨的订货编号

	1x	AMSD 4B S	25	-N	-G3	-KC	-R12	-958	-29	-29	-CN	-TR50
数量												
导轨												
尺寸												
导轨类型												
精度												
直线度												
基准面												
始端安装孔中心到最近端头距离L5												
末端安装孔中心到最近端头距离L10												
镀层												
磁尺						•		•	•			

NB

第8.1章到8.3章介绍了所有的型号、具体规格、选项和配件。 第2章描述了所有的选项。 如果可能,L3尺寸最好是标准长度。

这是使用第8.2章中的等式计算得出的: L3=n×L4+L5+L10≤L3max.

AMSD 4B 滑块的订货编号

	1x	AMSD 4B W	25	-A	-P1	-G3	-V1	-R1	-CN	-S10	-LN	-TSD	-050	-80	ZN
数量															
滑块															
尺寸															
滑块类型															
扫描头位置															
精度															
预紧															
基准面															
镀层															
润滑接口															
润滑的交货条件															
接口															
插值率															
输出频率															
基准脉冲															

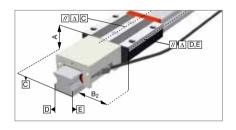
NB

第8.1到8.3章介绍了所有的型号、具体规格、选项和配件。 第2章中描述了所有的选项。

SCHNEEBERGER 的MONORAIL AMSABS 3B 是一款绝对式磁栅测量系统,适用于 自动化工业和吊装设备等领域,以及对系统测量精度要求很高、空间紧凑的机床行 业。AMSABS 3B 是基于SCHNEEBERGER 的MONORAIL MR滚柱直线导轨系统, 单根长度可达6m。一体式设计的测量系统结构非常紧凑。

SCHNEEBERGER提供不同长度的电缆以及数字接口以满足SSI, SSI+SinCos 和 FA-NUC 控制系统的要求。滑块润滑和密封可选择不同选项,适用于不同应用的需要。 扫描头可兼容于所有规格,更换简便。

MONORAIL AMSABS 3B 系统的特点



9 型号、尺寸和选项

AMSABS 3B 导轨简介	Page 156
AMSABS 3B 滑块简介	Page 157

9.2 技术参数和选项

AMSABS 3B 25	Page 158
AMSABS 3B 35	Page 160
AMSABS 3B 45	Page 162
AMSABS 3B 55	Page 164
AMSABS 3B 65	Page 166

9.3 MONORAIL AMSABS 3B 配件

配件一览表	Page 168
AMSABS 3B 导轨配件——详述	Page 53
AMSABS 3B 滑块配件——详述	Page 56

9.4 订单格式

AMSABS 3B 导轨订单格式	Page 169
AMSABS 3B 滑块订单格式	Page 169

9.1 型号、尺寸和选项

AMSABS 3B 导轨

AMSABS 3B 导轨简介

	N 标准型	NU 螺纹孔位于底部	C 带盖板		
导轨规格/导轨类型					
25	AMSABS 3B S 25-N	AMSABS 3B S 25-NU	AMSABS 3B S 25-C		
35	AMSABS 3B S 35-N	AMSABS 3B S 35-NU	AMSABS 3B S 35-C		
45	AMSABS 3B S 45-N	AMSABS 3B S 45-NU	AMSABS 3B S 45-C		
55	AMSABS 3B S 55-N	AMSABS 3B S 55-NU	AMSABS 3B S 55-C		
65	AMSABS 3B S 65-N	AMSABS 3B S 65-NU	AMSABS 3B S 65-C		
特点					
顶部螺栓紧固	•		•		
底部螺栓紧固		•			
装配简便		•	•		
—————————————————————————————————————	•	•	•		

AMSABS 3B 导轨可选项

精度

---GO 超高精密级

- ∼ G1 高精密级

■~ G2 精密级

△ G3 普通级

直线度

KC 标准

镀层 ── CN 无镀层

CH 硬化镀铬

基准面

基准面在下,磁尺在下

R12 基准面在下,磁尺在上

----- ^{R21} 基准面在上,磁尺在下

AMSABS 3B 导轨的可选配件

堵头

盖板

装配工具

9.1 型号、尺寸和选项

AMSABS 3B 滑块

AMSABS 3B 滑块简介

标准型

标准加长型

紧凑窄高型

~ 窄高加长型

滑块规格/滑块类型						
25	AMSABS 3B W 25-A	AMSABS 3B W 25-B	AMSABS 3B W 25-C	AMSABS 3B W 25-D		
35	AMSABS 3B W 35-A	AMSABS 3B W 35-B	AMSABS 3B W 35-C	AMSABS 3B W 35-D		
45	AMSABS 3B W 45-A	AMSABS 3B W 45-B	AMSABS 3B W 45-C	AMSABS 3B W 45-D		
55	AMSABS 3B W 55-A	AMSABS 3B W 55-B	AMSABS 3B W 55-C	AMSABS 3B W 55-D		
65	AMSABS 3B W 65-A	AMSABS 3B W 65-B	AMSABS 3B W 65-C	AMSABS 3B W 65-D		
特点						
	•	•	•	•		
底部螺栓紧固	•	•				
用于高承载和扭矩		•		•		
用于中等承载和扭矩	•		•			

AMSABS 3B 滑块可选项

枯	匞

■~ G1 高精密级 **1○ 62** 精密级

● G3 普通级

预紧力

/\ V1 低

√√√√√√ 中等

▲V3 高

基准面

镀层 ── CN 无镀层

CH 硬化镀铬

润滑接口

S10▶□ 左侧中央

S20 □ 右侧中央

S11 € 顶部左侧

S21 □ 顶部右侧

S12 □ 左下侧

S22 □ 右下侧

S13 □ 左上侧

S23 □ 右上侧

S42 口 右侧

出厂润滑保护

LN 润滑油保护

LG 润滑脂保护

接口

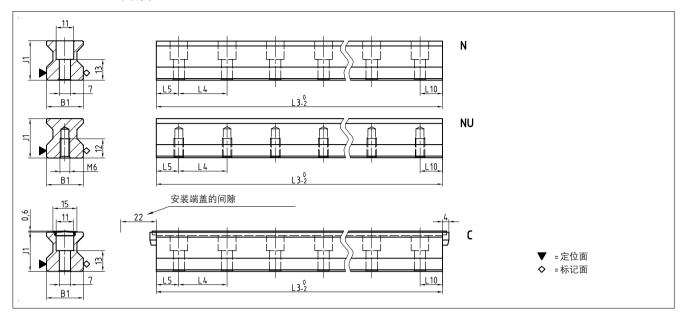
▼ MH TMH, 绝对式 0.3m

■ TRH TRH, 绝对式 3m

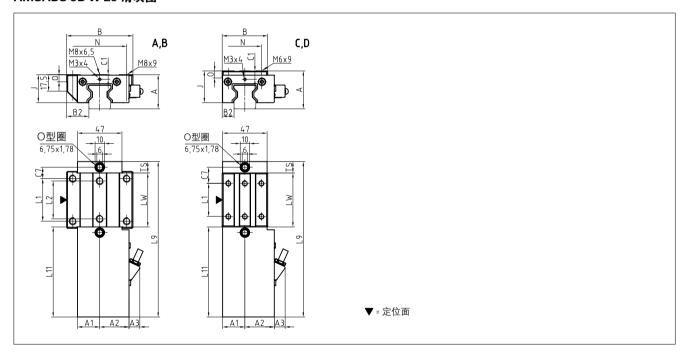
扫描头位置

上 P3 左侧底部

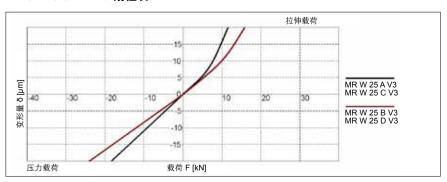
AMSABS 3B 滑块可选配件

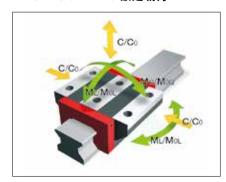

辅助刮屑板 端面板

波纹罩 润滑油嘴


装配轨 润滑连接板 自润滑板 电缆

AMSABS 3B 25


AMSABS 3B S 25 导轨图


AMSABS 3B W 25 滑块图

AMSABS 3B W 25 刚性表

AMSABS 3B W 25 额定载荷

AMSABS 3B 25

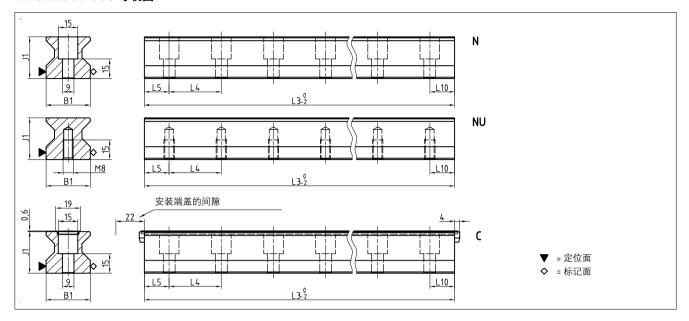
AMSABS 3B S 25 尺寸

		AMSABS 3B S 25-N	AMSABS 3B S 25-NU	AMSABS 3B S 25-C		
B1:	导轨宽度	23	23	23		
J1:	导轨高度	24.5	24.5	24.5		
L3:	导轨最大长度	6000	6000	3000		
L4:	安装孔孔距	30	30	30		
L5/L10):第一个/最后一个安装孔距端头的距离	13.5	13.5	13.5		
Gew.:	导轨重量(kg/m)	3.4	3.8	3.3		

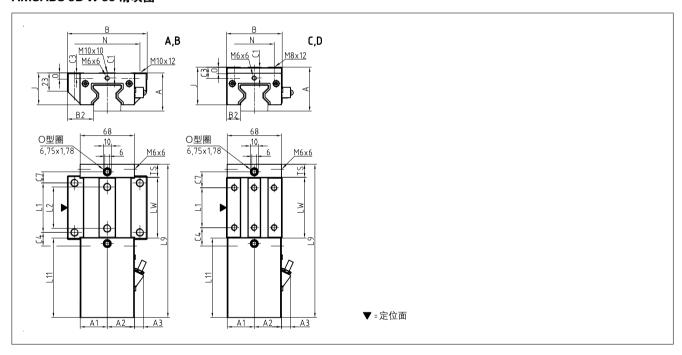
AMSABS 3B S 25 的可选选项

AMSABS 3B W 25 的尺寸和承载力

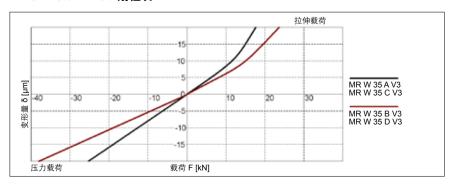
AMSABS 3B W 25-A	AMSABS 3B W 25-B	AMSABS 3B W 25-C	AMSABS 3B W 25-D			
36	36	40	40			
23.5	23.5	23.5	23.5			
31	31	31	31			
11.5	11.5	11.5	11.5			
70	70	48	48			
23.5	23.5	12.5	12.5			
5 / 5.5	5 / 5.5	9/9.5	9 / 9.5			
-	-	-	-			
-	-	-	-			
12	23.2	17	20.7			
29.5	29.5	33.5	33.5			
45	45	35	50			
40	40	-	-			
164.2	186.6	164.2	186.6			
95.2	95.2	95.2	95.2			
57	79.4	57	79.4			
57	57	35	35			
7.5	7.5	7.5	7.5			
12	12	12	12			
49800	70300	49800	70300			
27700	39100	27700	39100			
733	1035	733	1035			
476	936	476	936			
408	576	408	576			
265	521	265	521			
1.0	1.2	0.9	1.0			
	W 25-A 36 23.5 31 11.5 70 23.5 5 / 5.5 - 12 29.5 45 40 164.2 95.2 57 7.5 12 49800 27700 733 476 408 265	W 25-A W 25-B 36 36 23.5 23.5 31 11.5 70 70 23.5 23.5 5/5.5 5/5.5 - - 12 23.2 29.5 29.5 45 45 40 40 164.2 186.6 95.2 95.2 57 79.4 57 7.5 12 12 49800 70300 27700 39100 733 1035 476 936 408 576 265 521	W 25-A W 25-B W 25-C 36 36 40 23.5 23.5 23.5 31 31 31 11.5 11.5 11.5 70 70 48 23.5 12.5 5/5.5 5/5.5 5/5.5 9/9.5 - - - - - - 12 23.2 17 29.5 29.5 33.5 45 45 35 40 40 - 164.2 186.6 164.2 95.2 95.2 95.2 57 79.4 57 57 57 35 7.5 7.5 7.5 12 12 12 49800 70300 49800 27700 39100 27700 733 1035 733 476 408 576 408 265 <td< td=""><td>W 25-A W 25-B W 25-C W 25-D 36 36 40 40 23.5 23.5 23.5 23.5 31 31 31 31 11.5 11.5 11.5 11.5 70 70 48 48 23.5 12.5 12.5 5/5.5 5/5.5 9/9.5 9/9.5 - - - - - - - - 12 23.2 17 20.7 29.5 3.5 33.5 33.5 45 45 35 50 40 40 - - 164.2 186.6 164.2 186.6 95.2 95.2 95.2 57 79.4 57 79.4 57 7.5 7.5 7.5 12 12 12 12 49800 70300 49800 70300</td><td>W 25-A W 25-B W 25-C W 25-D 36 36 40 40 23.5 23.5 23.5 23.5 31 31 31 31 11.5 11.5 11.5 11.5 70 70 48 48 23.5 23.5 12.5 12.5 5/5.5 5/5.5 9/9.5 9/9.5 - - - - - - - - 12 23.2 17 20.7 29.5 33.5 33.5 45 45 35 50 40 40 - - 164.2 186.6 164.2 186.6 95.2 95.2 95.2 95.2 57 79.4 57 79.4 57 7.5 7.5 7.5 12 12 12 12 49800 70300 49800 70300</td><td>W 25-A W 25-B W 25-C W 25-D 36 36 40 40 23.5 23.5 23.5 23.5 31 31 31 31 11.5 11.5 11.5 11.5 70 70 48 48 23.5 23.5 12.5 12.5 5/5.5 5/5.5 9/9.5 9/9.5 - - - - - - - - 12 23.2 17 20.7 29.5 29.5 33.5 33.5 45 45 35 50 40 40 - - 164.2 186.6 164.2 186.6 95.2 95.2 95.2 95.2 57 79.4 57 79.4 57 7.5 7.5 7.5 12 12 12 12 49800 70300 49800</td></td<>	W 25-A W 25-B W 25-C W 25-D 36 36 40 40 23.5 23.5 23.5 23.5 31 31 31 31 11.5 11.5 11.5 11.5 70 70 48 48 23.5 12.5 12.5 5/5.5 5/5.5 9/9.5 9/9.5 - - - - - - - - 12 23.2 17 20.7 29.5 3.5 33.5 33.5 45 45 35 50 40 40 - - 164.2 186.6 164.2 186.6 95.2 95.2 95.2 57 79.4 57 79.4 57 7.5 7.5 7.5 12 12 12 12 49800 70300 49800 70300	W 25-A W 25-B W 25-C W 25-D 36 36 40 40 23.5 23.5 23.5 23.5 31 31 31 31 11.5 11.5 11.5 11.5 70 70 48 48 23.5 23.5 12.5 12.5 5/5.5 5/5.5 9/9.5 9/9.5 - - - - - - - - 12 23.2 17 20.7 29.5 33.5 33.5 45 45 35 50 40 40 - - 164.2 186.6 164.2 186.6 95.2 95.2 95.2 95.2 57 79.4 57 79.4 57 7.5 7.5 7.5 12 12 12 12 49800 70300 49800 70300	W 25-A W 25-B W 25-C W 25-D 36 36 40 40 23.5 23.5 23.5 23.5 31 31 31 31 11.5 11.5 11.5 11.5 70 70 48 48 23.5 23.5 12.5 12.5 5/5.5 5/5.5 9/9.5 9/9.5 - - - - - - - - 12 23.2 17 20.7 29.5 29.5 33.5 33.5 45 45 35 50 40 40 - - 164.2 186.6 164.2 186.6 95.2 95.2 95.2 95.2 57 79.4 57 79.4 57 7.5 7.5 7.5 12 12 12 12 49800 70300 49800

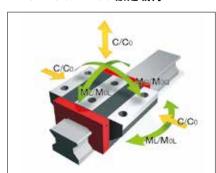

注: *该数值仅对于外部壳体/端面板有效

AMSABS 3B W 25 的可选选项



AMSABS 3B 35


AMSABS 3B S 35 导轨图


AMSABS 3B W 35 滑块图

AMSABS 3B W 35 刚性表

AMSABS 3B W 35 额定载荷

AMSABS 3B 35

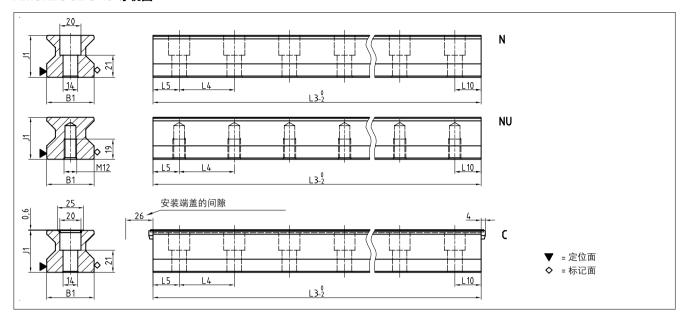
AMSABS 3B S 35 尺寸

	AMSABS 3B S 35-N	AMSABS 3B S 35-NU	AMSABS 3B S 35-C		
B1: 导轨宽度	34	34	34		
	32	32	32		
L3: 导轨最大长度	6000	6000	6000		
L4: 安装孔孔距	40	40	40		
L5/L10:第一个/最后一个安装孔距端头的距离	18.5	18.5	18.5		
Gew.: 导轨重量 (kg/m)	6.5	7.1	6.3		

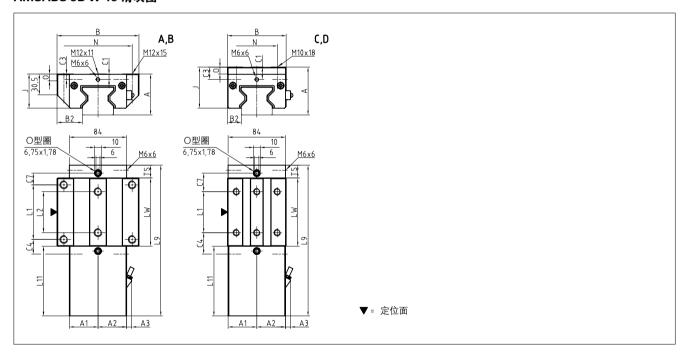
AMSABS 3B S 35 的可选选项

AMSABS 3B W 35 的尺寸和承载力

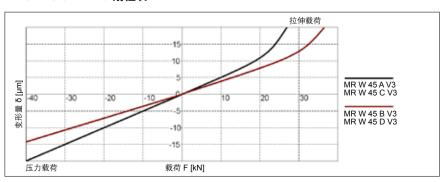
	AMSABS 3B W 35-A	AMSABS 3B W 35-B	AMSABS 3B W 35-C	AMSABS 3B W 35-D		
A: 系统高度	48	48	55	55		
A1: 中心线到壳体一端的距离	34	34	34	34		
A2: 中心线到扫描头一端的距离	34	34	34	34		
A3: 扫描头凸出尺寸	11.5	11.5	11.5	11.5		
B: 滑块宽度	100	100	70	70		
B2: 导轨基准面与滑块基准面之间的距离	33	33	18	18		
C1: 前端中心润滑孔的位置*	6.5 / 7	6.5 / 7	13.5 / 14	13.5 / 14		
C3: 侧面润滑孔的位置	7	7	14	14		
C4: 侧面润滑孔的位置	17	30.5	23	25.5		
C7: 顶部润滑孔的位置	14	27.5	20	22.5		
J: 滑块高度	40	40	47	47		
L1: 外侧安装孔孔距	62	62	50	72		
L2: 中间安装孔孔距	52	52	-	-		
L9: 滑块带壳体的总长度	192.2	219.2	192.2	219.2		
L11: 壳体长度	99.7	99.7	99.7	99.7		
Lw: 滑块钢体长度	76	103	76	103		
N: 侧面安装孔间距	82	82	50	50		
0: 基准面高度	8	8	8	8		
Ts: 端面板厚度	16.5	16.5	16.5	16.5		
承载力和重量						
C0: 静态承载力 (Nm)	93400	128500	93400	128500		
C100: 动态承载力(Nm)	52000	71500	52000	71500		
M0Q: 静态径向翻转力矩(Nm)	2008	2762	2008	2762		
MOL: 静态轴向翻转力矩(Nm)	1189	2214	1189	2214		
MQ: 动态径向翻转力矩(Nm)	1118	1537	1118	1537		
ML: 动态轴向扭矩承载力(Nm)	662	1232	662	1232		
Gew: 滑块重量(kg)	2.0	2.6	1.9	2.4		

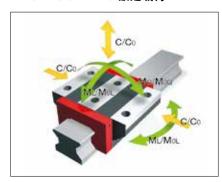

注: *该数值仅对于外部壳体/端面板有效

AMSABS 3B W 35 的可选选项


- GO	G2	G3	√ V1	√ ∨2	▲ V3	R1	R2	CN CH	<mark>S10</mark> ▶□	S20 □	<mark>S11</mark> €□	S21 🕞 S12 🕻	
S22 S13 S	S23 🗂	S32 🗀	S42 🔲	∆o LN	LG	∑ LV	◯ ■ TMH	TRH P1	P3				

AMSABS 3B 45


AMSABS 3B S 45 导轨图


AMSABS 3B W 45 滑块图

AMSABS 3B W 45 刚性表

AMSABS 3B W 45 额定载荷

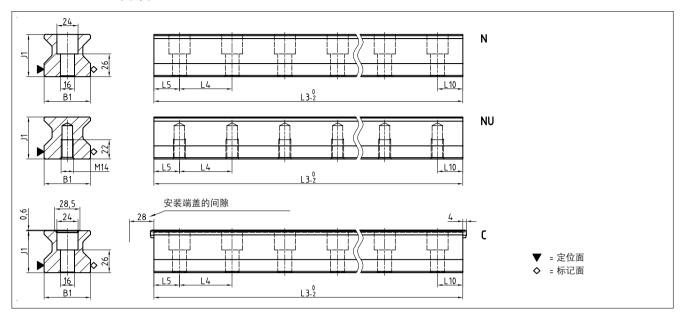
AMSABS 3B 45

AMSABS 3B S 45 尺寸

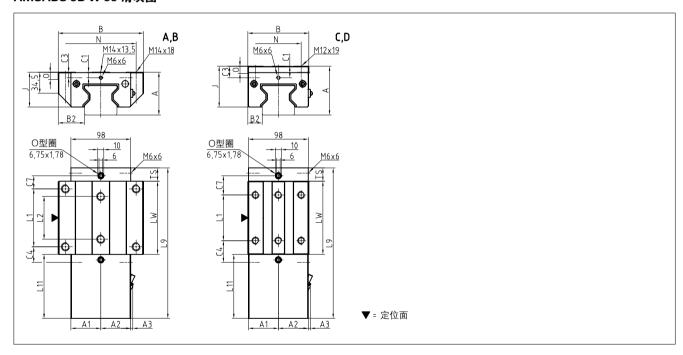
	AMSABS 3B S 45-N	AMSABS 3B S 45-NU	AMSABS 3B S 45-C		
B1: 导轨宽度	45	45	45		
J1: 导轨高度	40	40	40		
L3: 导轨最大长度	6000	6000	6000		
L4: 安装孔孔距	52.5	52.5	52.5		
L5/L10:第一个/最后一个安装孔距端头的距离	25	25	25		
Gew.: 导轨重量 (kg/m)	10.8	11.8	10.6		

AMSABS 3B S 45 的可选选项

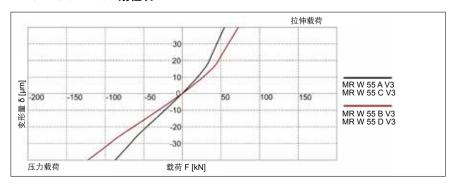
AMSABS 3B W 45 的尺寸和承载力

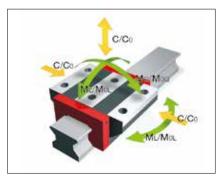

	AMSABS 3B W 45-A	AMSABS 3B W 45-B	AMSABS 3B W 45-C	AMSABS 3B W 45-D		
A: 系统高度	60	60	70	70		
A1: 中心线到壳体一端的距离	42	42	42	42		
A2: 中心线到扫描头一端的距离	42	42	42	42		
A3: 扫描头凸出尺寸	7.5	7.5	7.5	7.5		
B: 滑块宽度	120	120	86	86		
B2: 导轨基准面与滑块基准面之间的距离	37.5	37.5	20.5	20.5		
C1: 前端中心润滑孔的位置	8	8	18	18		
C3: 侧面润滑孔的位置	8	8	18	18		
C4: 侧面润滑孔的位置	21.25	38.75	31.25	38.75		
C7: 顶部润滑孔的位置	17	34.5	27	34.5		
J: 滑块高度	50	50	60	60		
L1: 外侧安装孔孔距	80	80	60	80		
L2: 中间安装孔孔距	60	60	-	-		
L9: 滑块带壳体的总长度	220.7	255.7	220.7	255.7		
L11: 壳体长度	101.9	101.9	101.9	101.9		
Lw: 滑块钢体长度	100	135	100	135		
N: 侧面安装孔间距	100	100	60	60		
0: 基准面高度	10	10	10	10		
Ts: 端面板厚度	18.8	18.8	18.8	18.8		
承载力和重量						
CO: 静态承载力 (Nm)	167500	229500	167500	229500		
C100: 动态承载力(Nm)	93400	127800	93400	127800		
M0Q: 静态径向翻转力矩(Nm)	4621	6333	4621	6333		
MOL: 静态轴向翻转力矩(Nm)	2790	5161	2790	5161		
MQ: 动态径向翻转力矩(Nm)	2577	3527	2577	3527		
ML: 动态轴向扭矩承载力(Nm)	1556	2874	1556	2874		
Gew: 滑块重量(kg)	3.8	4.9	3.6	4.6		

AMSABS 3B W 45 的可选选项



AMSABS 3B 55


AMSABS 3B S 55 导轨图


AMSABS 3B W 55 滑块图

AMSABS 3B W 55 刚性表

AMSABS 3B W 55 额定载荷

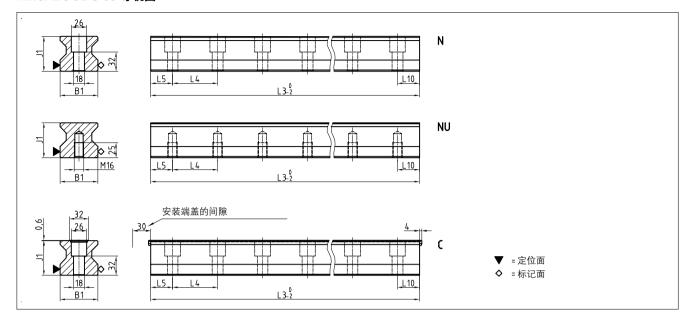
AMSABS 3B 55

AMSABS 3B S 55 尺寸

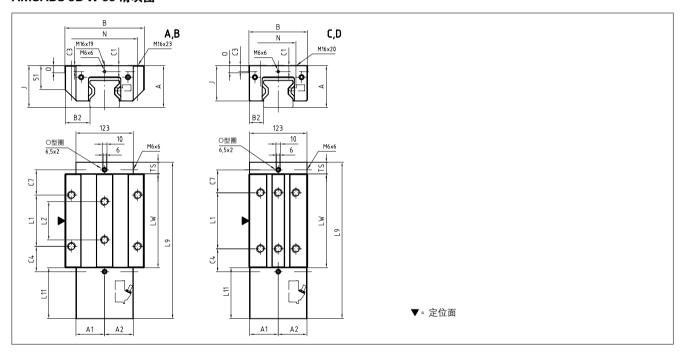
	AMSABS 3B S 55-N	AMSABS 3B S 55-NU	AMSABS 3B S 55-C		
B1: 导轨宽度	53	53	53		
J1: 导轨高度	48	48	48		
L3: 导轨最大长度	6000	6000	6000		
L4: 安装孔孔距	60	60	60		
L5/L10:第一个/最后一个安装孔距端头的距离	28.5	28.5	28.5		
Gew.: 导轨重量 (kg/m)	15.2	16.6	14.9		

AMSABS 3B S 55 的可选选项

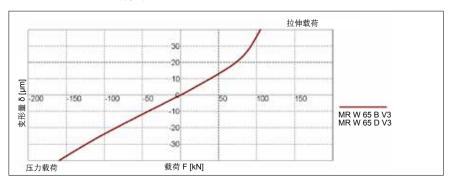
AMSABS 3B W 55 的尺寸和承载力

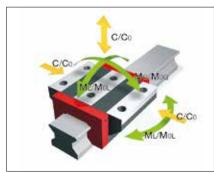

	AMSABS 3B W 55-A	AMSABS 3B W 55-B	AMSABS 3B W 55-C	AMSABS 3B W 55-D		
A: 系统高度	70	70	80	80		
A1: 中心线到壳体一端的距离	49	49	49	49		
A2: 中心线到扫描头一端的距离	49	49	49	49		
A3: 扫描头凸出尺寸	3.5	3.5	3.5	3.5		
B: 滑块宽度	140	140	100	100		
B2: 导轨基准面与滑块基准面之间的距离	43.5	43.5	23.5	23.5		
C1: 前端中心润滑孔的位置	9	9	19	19		
C3: 侧面润滑孔的位置	9	9	19	19		
C4: 侧面润滑孔的位置	25.75	46.75	35.75	46.75		
C7: 顶部润滑孔的位置	21.5	42.5	31.5	42.5		
J: 滑块高度	57	57	67	67		
L1: 外侧安装孔孔距	95	95	75	95		
L2: 中间安装孔孔距	70	70	-	-		
L9: 滑块带壳体的总长度	246.7	288.7	246.7	288.7		
L11: 壳体长度	104.9	104.9	104.9	104.9		
Lw: 滑块钢体长度	120	162	120	162		
N: 侧面安装孔间距	116	116	75	75		
0: 基准面高度	12	12	12	12		
Ts: 端面板厚度	21.8	21.8	21.8	21.8		
承载力和重量						
CO: 静态承载力 (Nm)	237000	324000	237000	324000		
C100: 动态承载力(Nm)	131900	180500	131900	180500		
MOQ: 静态径向翻转力矩(Nm)	7771	10624	7771	10624		
MOL: 静态轴向翻转力矩(Nm)	4738	8745	4738	8745		
MQ: 动态径向翻转力矩(Nm)	4325	5919	4325	5919		
ML: 动态轴向扭矩承载力(Nm)	2637	4872	2637	4872		
Gew: 滑块重量(kg)	5.8	7.6	5.3	6.9		

AMSABS 3B W 55 的可选选项



AMSABS 3B 65


AMSABS 3B S 65 导轨图


AMSABS 3B W 65 滑块图

AMSABS 3B W 65 刚性表

AMSABS 3B W 65 额定载荷

AMSABS 3B 65

AMSABS 3B S 65 尺寸

	AMSABS 3B S 65-N	AMSABS 3B S 65-NU	AMSABS 3B S 65-C		
B1: 导轨宽度	63	63	63		
J1: 导轨高度	58	58	58		
L3: 导轨最大长度	6000	6000	6000		
L4: 安装孔孔距	75	75	75		
L5/L10:第一个/最后一个安装孔距端头的距离	36	36	36		
Gew.: 导轨重量 (kg/m)	22.8	24.5	22.5		

AMSABS 3B S 65 的可选选项

AMSABS 3B W 65 的尺寸和承载力

	AMSABS 3B W 65-A	AMSABS 3B W 65-B	AMSABS 3B W 65-C	AMSABS 3B W 65-D		
A: 系统高度	90	90	90	90		
A1: 中心线到壳体一端的距离	61.5	61.5	61.5	61.5		
A2: 中心线到扫描头一端的距离	61.5	61.5	61.5	61.5		
A3: 扫描头凸出尺寸	0	0	0	0		
B: 滑块宽度	170	170	126	126		
B2: 导轨基准面与滑块基准面之间的距离	53.5	53.5	31.5	31.5		
C1: 前端中心润滑孔的位置	13	13	13	13		
C3: 侧面润滑孔的位置	13	13	13	13		
C4: 侧面润滑孔的位置	31.75	58	51.75	53		
C7: 顶部润滑孔的位置	27.75	54	47.75	49		
J: 滑块高度	76	76	76	76		
L1: 外侧安装孔孔距	110	110	70	120		
L2: 中间安装孔孔距	82	82	-	-		
L9: 滑块带壳体的总长度	282.5	335	282.5	335		
L11: 壳体长度	109	109	109	109		
Lw: 滑块钢体长度	148.5	201	148.5	201		
N: 侧面安装孔间距	142	142	76	76		
0: 基准面高度	15	15	15	15		
Ts: 端面板厚度	25	25	25	25		
承载力和重量						
CO: 静态承载力 (Nm)	419 000	530 000	419 000	530 000		
C100: 动态承载力(Nm)	232 000	295 000	232 000	295 000		
M0Q: 静态径向翻转力矩(Nm)	16 446	20 912	16 446	20 912		
MOL: 静态轴向翻转力矩(Nm)	10 754	17 930	10 754	17 930		
MQ: 动态径向翻转力矩(Nm)	9 154	11 640	9 154	11 640		
ML: 动态轴向扭矩承载力(Nm)	5 954	9 980	5 954	9 980		
Gew: 滑块重量(kg)	11.6	14.9	9.3	11.8		

AMSABS 3B W 65 的可选选项

AMSABS 3B 导轨配件一览表

配件	AMSABS 3B S 25	AMSABS 3B S 35	AMSABS 3B S 45	AMSABS 3B S 55	AMSABS 3B S 65	
堵头:						
塑料堵头	MRK 25	MRK 35	MRK 45	MRK 55	MRK 65	
铜堵头	MRS 25	MRS 35	MRS 45	MRS 55	MRS 65	
钢堵头	MRZ 25	MRZ 35	MRZ 45	MRZ 55	MRZ 65	
盖板:						
盖板(备件)	MAC 25	MAC 35	MAC 45	MAC 55	MAC 65	
盖板端盖(备件)	EST 25-MAC	EST 35-MAC	EST 45-MAC	EST 55-MAC	EST 65-MAC	
盖板封盖(备件)	BSC 25-MAC	BSC 35-MAC	BSC 45-MAC	BSC 55-MAC	BSC 65-MAC	
装配工具:						
安装钢堵头的工具	MWH 25	MWH 35	MWH 45	MWH 55	MWH 65	
用于MWH的液压缸	MZH	MZH	MZH	MZH	MZH	
安装盖板的工具	MWC 25	MWC 35	MWC 45	MWC 55	MWC 65	

AMSABS 3B 滑块配件一览表

配件	AMSABS 3B W 25	AMSABS 3B W 35	AMSABS 3B W 45	AMSABS 3B W 55	AMSABS 3B W 65	
辅助刮屑板: NBR材料辅助刮屑板 Viton橡胶辅助刮屑板 金属刮屑板	ZCN 25 ZCV 25 ASM 25-A	ZCN 35 ZCV 35 ASM 35-A	ZCN 45 ZCV 45 ASM 45-A	ZCN 55 ZCV 55 ASM 55-A	ZCN 65 ZCV 65 ASM 65-A	
波纹罩: 波纹罩 波纹罩连接板(备件) 波纹罩端面板(备件)	FBM 25 ZPL 25 EPL 25	FBM 35 ZPL 35 EPL 35	FBM 45 ZPL 45 EPL 45	FBM 55 ZPL 55 EPL 55	FBM 65 ZPL 65 EPL 65	
装配轨: 装配轨	MRM 25	MRM 35	MRM 45	MRM 55	MRM 65	
自润滑板: 自润滑板	SPL 25-MR	SPL 35-MR	SPL 45-MR	SPL 55-MR	SPL 65-MR	
端面板: 端面板(备件)	STP 25-EK	STP 35-EK	STP 45-EK	STP 55-EK	STP 65-EK	
脂润滑油嘴: 直润滑油嘴 45°润滑油嘴 90°润滑油嘴 M3漏斗式润滑油嘴 M6漏斗式润滑油嘴 用于SN 3-T和SN 6-T的注油枪	SN 6 SN 6-45 SN 6-90 SN 3-T SN 6-T SFP-T3	SN 6 SN 6-45 SN 6-90 - SN 6-T SFP-T3	SN 6 SN 6-45 SN 6-90 - SN 6-T SFP-T3	SN 6 SN 6-45 SN 6-90 - SN 6-T SFP-T3	SN 6 SN 6-45 SN 6-90 - SN 6-T SFP-T3	
油润滑用变径接头: 直螺旋接头M3 M8外圆变径接头 M8外六角接头 G1/8 外六角接头 摆角式接头,外接油管直径d=4mm M6摆角式接头 加长型M6摆角式接头 加长型M6摆角式接头	SA 3-D3 SA 6-RD-M8 - - SV 6-D4 SV 6-M6 SV 6-M6-L SV 6-M8 SV 6-M8-L	- SA 6-RD-M8 SA 6-6KT-M8 SA 6-6KT-G1/8 SV 6-D4 SV 6-M6 SV 6-M6-L SV 6-M8 SV 6-M8-L	- SA 6-RD-M8 SA 6-6KT-M8 SA 6-6KT-G1/8 SV 6-D4 SV 6-M6 SV 6-M6-L SV 6-M8 SV 6-M8-L	SA 6-RD-M8 SA 6-6KT-M8 SA 6-6KT-G1/8 SV 6-D4 SV 6-M6 SV 6-M6-L SV 6-M8 SV 6-M8-L	- SA 6-RD-M8 SA 6-6KT-M8 SA 6-6KT-G1/8 SV 6-D4 SV 6-M6 SV 6-M6-L SV 6-M8 SV 6-M8-L	

9.4 订货编号

所有的导轨和滑块应根据以下的订货编号进行订货。

AMSABS 3B滑块由滑块、壳体和扫描头组成。

所有的MONORAIL MR 滑块都能用于同规格AMSABS 3B 导轨。

第2章和3.3章详述了配件的订货编号。

单件导轨、滑块和配件都使用各自的订货编号。

所有的导轨组件都是未装配,按标准件单独供货的。

如果需要,SCHNEEBERGER也提供装配好的导轨、滑块和配件作为整套系统。具体请参看2.4章的订货指导。

AMSABS 3B 导轨的订货编号

	1x	AMSABS 3B S	35	-C	-G1	-KC	-R11	-2936	-28	-28	-CN	-TA1
数量												
导轨												
尺寸												
导轨类型												
精度												
直线度												
基准面												
导轨长度L3												
始端安装孔中心到最近端头距离L5												
末端安装孔中心到最近端头距离L10												
镀层												
磁尺												

NB

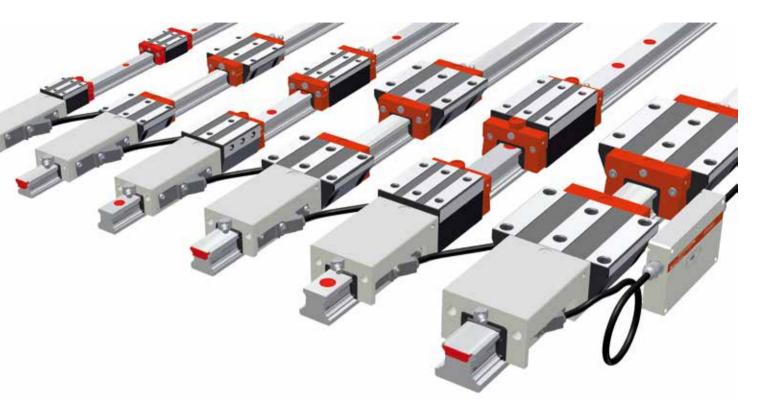
第9.1章到9.3章介绍了所有的型号、具体规格、选项和配件。

第2章描述了所有的选项。

如果可能,L3尺寸最好是标准长度。

这是使用第9.2章中的等式计算得出的: L3=n×L4+L5+L10≤L3max.

AMSABS 3B 滑块的订货编号


	1x	AMSABS 3B W	35	-В	-P1	-G1	-V3	-R2	-CN	-S12	-LN	-TSH
数量												
滑块												
尺寸												
滑块类型												
扫描头位置												
 精度				-								
预紧												
基准面				-								
镀层												
润滑接口				-								
润滑的交货条件												
接头												

NB

第9.1到9.3章介绍了所有的型号、具体规格、选项和配件。

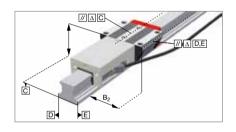
第2章中描述了所有的选项。

相关接口选项信息,请访问公司网站WWW.SCHNEEBERGER.COM

SCHNEEBERGER 的MONORAIL AMSABS 4B 是一款绝对式磁栅测量系统,适用于自动化工业和吊装设备等领域,以及对系统测量精度要求很高、空间紧凑的机床行业。AMSABS 4B 是基于SCHNEEBERGER 的MONORAIL BM 滚珠直线导轨系统,单根长度可达6m。一体式设计的测量系统结构非常紧凑。

SCHNEEBERGER提供不同长度的电缆以及数字接口以满足SSI, SSI+SinCos 和 FA-NUC 控制系统的要求。滑块润滑和密封可选择不同选项,适用于不同应用的需要。扫描头可兼容于所有规格,更换简便。

MONORAIL AMSABS 4B 系统的特点



型号、尺寸和选项

AMSABS 4B 导轨简介	Page 174
AMSABS 4B 滑块简介	Page 175

10.2 技术参数和选项

AMSABS 4B 15	Page 176
AMSABS 4B 20	Page 178
AMSABS 4B 25	Page 180
AMSABS 4B 30	Page 182
AMSABS 4B 35	Page 184
AMSABS 4B 45	Page 186

10.3 MONORAIL AMSABS 4B 配件

配件一览表	Page 188
AMSABS 4B 导轨配件——详述	Page 79
AMSABS 4B 滑块配件——详述	Page 81

10.4 订单格式

AMSABS 4B 导轨订单格式	Page 189
AMSABS 4B 滑块订单格式	Page 189

10.1 型号、尺寸和选项

AMSABS 4B 导轨

AMSABS 4B 导轨简介

AMSABS 4B 导轨可选项

精度

- **~ GO** 超高精密级

■ ○ G1 高精密级

直线度

镀层

T CN 无镀层

mm CH 硬化镀铬

基准面

R12 基准面在下,磁尺在上

1 基准面在上,磁尺在下

AMSABS 4B 导轨的可选配件

堵头

盖板

装配工具

ONORAIL AMSABS 3B

10.1 型号、尺寸和选项

AMSABS 4B 滑块

AMSABS 4B 滑块简介

标准型

标准加长型

紧凑窄高型

-窄高加长型

紧凑型

滑块规格/滑块类型						
15	AMSABS 4B W 15-A		AMSABS 4B W 15-C		AMSABS 4B W 15-F	
20	AMSABS 4B W 20-A	AMSABS 4B W 20-B	AMSABS 4B W 20-C	AMSABS 4B W 20-D		
25	AMSABS 4B W 25-A	AMSABS 4B W 25-B	AMSABS 4B W 25-C	AMSABS 4B W 25-D		
30	AMSABS 4B W 30-A	AMSABS 4B W 30-B	AMSABS 4B W 30-C	AMSABS 4B W 30-D		
35	AMSABS 4B W 35-A	AMSABS 4B W 35-B	AMSABS 4B W 35-C	AMSABS 4B W 35-D		
45	AMSABS 4B W 45-A	AMSABS 4B W 45-B	AMSABS 4B W 45-C	AMSABS 4B W 45-D		
特点						
顶部螺栓紧固	•	•	•	•	•	
底部螺栓紧固	•	•				
用于高承载和扭矩		•		•		
用于中等承载和扭矩	•		•		•	
适用于有限空间					•	

AMSABS 4B 滑块可选项

精度

■ ○ G1 高精密级 **□へ** G2 精密级

<mark>← G3</mark> 普通级

润滑接口

S10▶□ 左侧中央

S20 □ 右侧中央 S11 € 顶部左侧

S21 □ 顶部右侧

S12 □ 左下侧

S22 □ 右下侧

扫描头位置

P1 右侧顶部

上 P3 左侧底部

基准面

R1 底部

R2 顶部

镀层

──<mark>CN</mark> 无镀层

出厂润滑保护

△。LN 润滑油保护

LG 润滑脂保护

江 充分润滑

接口

☑ IMH, 绝对式 0.3m

- TRH, 绝对式 3m

AMSABS 4B 滑块可选配件

辅助刮屑板 端面板

波纹罩 润滑油嘴

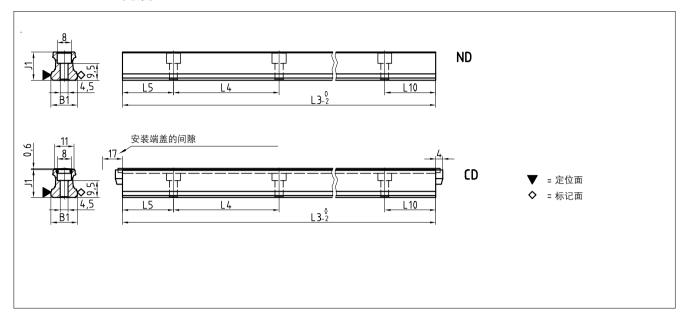
预紧力

№ 较低

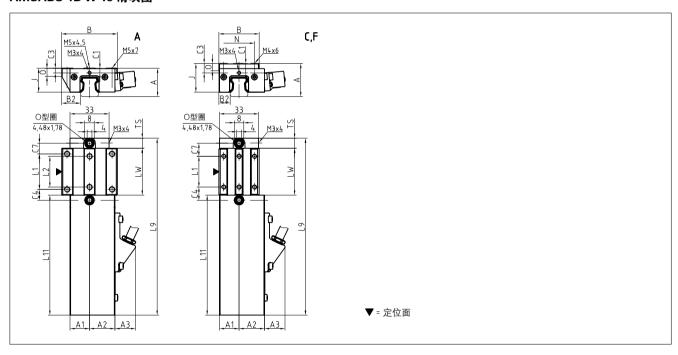
V2 中等

S23 □ 右上侧

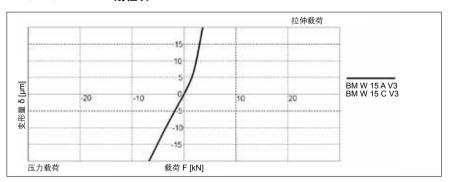
S42 □ 右侧

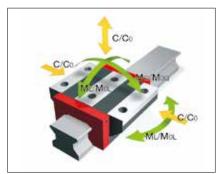

从V1 低

▲ V3 高


装配轨 润滑连接板 自润滑板 电缆

AMSABS 4B 15


AMSABS 4B S 15 导轨图


AMSABS 4B W 15 滑块图

AMSABS 4B W 15 刚性表

AMSABS 4B W 15 额定载荷

AMSABS 4B 15

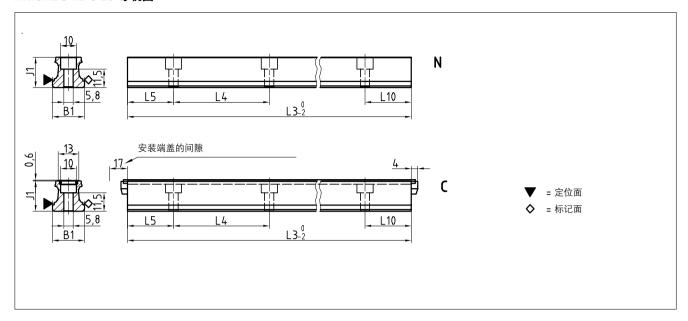
AMSABS 4B S 15 尺寸

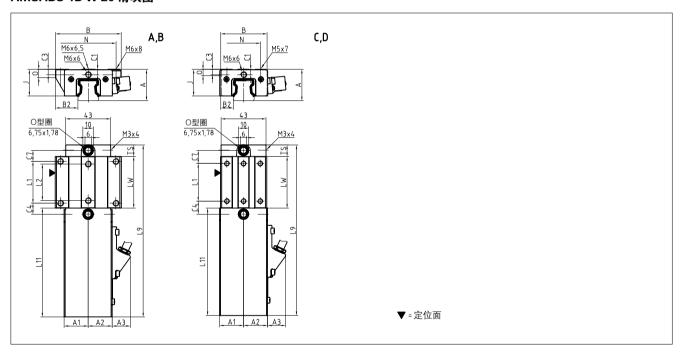
		AMSABS 4B S 15-ND	AMSABS 4B S 15-CD			
B1:	导轨宽度	15	15			
J1:	导轨高度	15.7	15.7			
L3:	导轨最大长度	1500	1500			
L4:	安装孔孔距	60	60			
L5/L10):第一个/最后一个安装孔距端头的距离	28.5	28.5			
Gew.:	导轨重量(kg/m)	1.4	1.3			

AMSABS 4B S 15 的可选选项

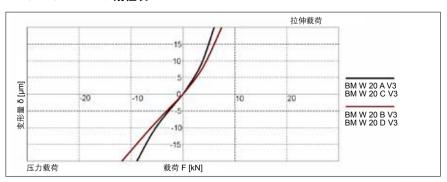
AMSABS 4B W 15 的尺寸和承载力

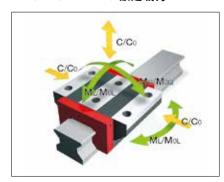
	AMSABS 4B W 15-A	AMSABS 4B W 15-C	AMSABS 4B W 15-F		
A: 系统高度	24	28	24		
A1:中心线到壳体一端的距离	16.5	16.5	16.5		
A2: 中心线到扫描头一端的距离	21.5	21.5	21.5		
A3: 扫描头凸出尺寸	17.5	17.5	17.5		
B: 滑块宽度	47	34	34		
B2: 导轨基准面与滑块基准面之间的距离	16	9.5	9.5		
C1: 前端中心润滑孔的位置	4	8	4		
C3: 侧面润滑孔的位置	3.7	7.7	3.7		
C4: 侧面润滑孔的位置	9.3	11.3	11.3		
C7: 顶部润滑孔的位置	9.05	11.05	11.05		
J: 滑块高度	20.2	24.2	20.2		
L1: 外侧安装孔孔距	30	26	26		
L2: 中间安装孔孔距	26	-	-		
L9: 滑块带壳体的总长度	149.6	149.6	149.6		
	101.5	101.5	101.5		
Lw: 滑块钢体长度	39.6	39.6	39.6		
N: 侧面安装孔间距	38	26	26		
0: 基准面高度	7	6	5.5		
Ts: 端面板厚度	8.5	8.5	8.5		
承载力和重量					
CO: 静态承载力 (Nm)	19600	19600	19600		
C100: 动态承载力(Nm)	9000	9000	9000		
MOQ: 静态径向翻转力矩(Nm)	181	181	181		
MOL: 静态轴向翻转力矩(Nm)	146	146	146		
MQ: 动态径向翻转力矩(Nm)	83	83	83		
ML: 动态轴向扭矩承载力(Nm)	67	67	67		
Gew: 滑块重量(kg)	0.4	0.5	0.4		


AMSABS 4B W 15 的可选选项


177

AMSABS 4B 20


AMSABS 4B S 20 导轨图


AMSABS 4B W 20 滑块图

AMSABS 4B W 20 刚性表

AMSABS 4B W 20 额定载荷

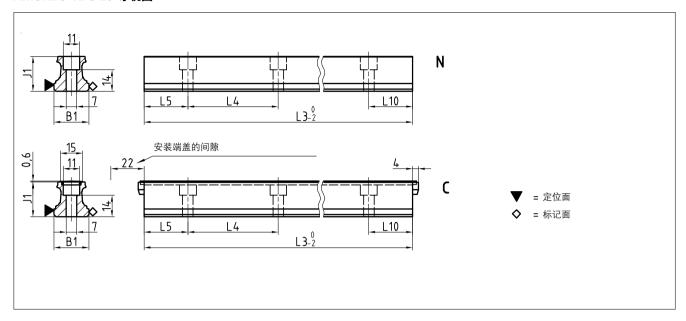
AMSABS 4B 20

AMSABS 4B S 20 尺寸

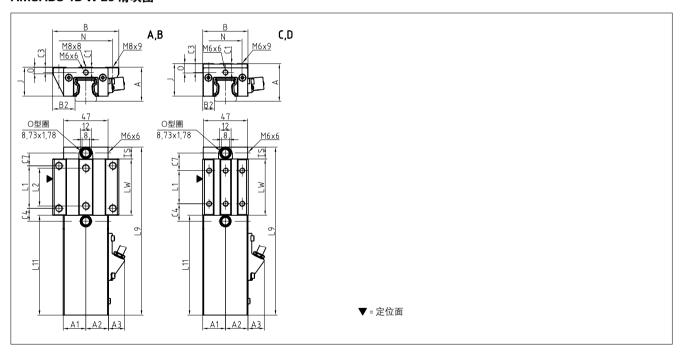
		AMSABS 4B S 20-N	AMSABS 4B S 20-C			
B1:	导轨宽度	20	20			
J1:	导轨高度	19	19			
L3:	导轨最大长度	3000	3000			
L4:	安装孔孔距	60	60			
L5/L10):第一个/最后一个安装孔距端头的距离	28.5	28.5			
Gew.:	导轨重量(kg/m)	2.2	2.1			

AMSABS 4B S 20 的可选选项

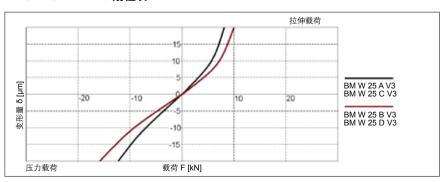
AMSABS 4B W 20 的尺寸和承载力

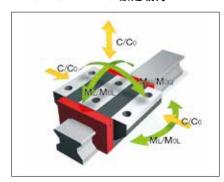

	AMSABS 4B W 20-A	AMSABS 4B W 20-B	AMSABS 4B W 20-C	AMSABS 4B W 20-D		
A: 系统高度	30	30	30	30		
A1: 中心线到壳体一端的距离	23	23	23	23		
A2: 中心线到扫描头一端的距离	23	23	23	23		
A3: 扫描头凸出尺寸	17.5	17.5	17.5	17.5		
B: 滑块宽度	63	63	44	44		
B2: 导轨基准面与滑块基准面之间的距离	21.5	21.5	12	12		
C1: 前端中心润滑孔的位置	5.2	5.2	5.2	5.2		
C3: 侧面润滑孔的位置	4.6	4.6	4.6	4.6		
C4: 侧面润滑孔的位置	10.75	18.75	12.75	13.75		
C7: 顶部润滑孔的位置	10.25	18.25	12.25	13.25		
	25.5	25.5	25.5	25.5		
L1: 外侧安装孔孔距	40	40	36	50		
L2: 中间安装孔孔距	35	35	-	-		
L9: 滑块带壳体的总长度	164.5	180.5	164.5	180.5		
 L11: 壳体长度	104	104	104	104		
Lw: 滑块钢体长度	49.5	65.5	49.5	65.5		
N: 侧面安装孔间距	53	53	32	32		
0: 基准面高度	8	8	6	6		
 Ts: 端面板厚度	11	11	11	11		
承载力和重量						
C0: 静态承载力 (Nm)	31400	41100	31400	41100		
C100: 动态承载力(Nm)	14400	17400	14400	17400		
MOQ: 静态径向翻转力矩(Nm)	373	490	373	490		
MOL: 静态轴向翻转力矩(Nm)	292	495	292	495		
MQ: 动态径向翻转力矩(Nm)	171	206	171	206		
ML: 动态轴向扭矩承载力(Nm)	134	208	134	208		
Gew: 滑块重量(kg)	0.7	0.8	0.6	0.7		

AMSABS 4B W 20 的可选选项


Amonbo 45 ii 20 k) 4 keek
60 G1 G2 G3 V0 V1 V2 V2 V3 R1 R2 CN CN S10 S20 S11 S21 S21 S21 S10 S20 S11 S21 S21 S21 S21 S21 S21 S21 S21 S22
S12 D S22 S13 S23 D S24

AMSABS 4B 25


AMSABS 4B S 25 导轨图


AMSABS 4B W 25 滑块图

AMSABS 4B W 25 刚性表

AMSABS 4B W 25 额定载荷

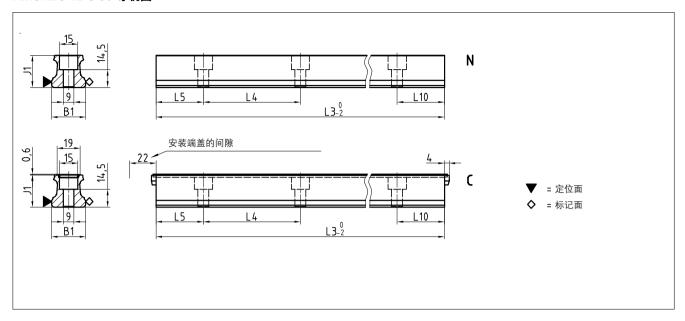
AMSABS 4B 25

AMSABS 4BS 25 尺寸

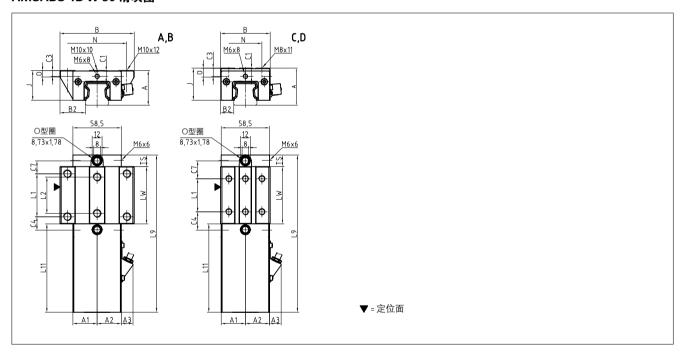
		AMSABS 4B S 25-N	AMSABS 4B S 25-C			
B1: 导	執宽度	23	23			
J1: 导	執高度	22.7	22.7			
L3: 导	轨最大长度	6000	6000			
L4: 安	·装孔孔距	60	60			
L5/L10:第-	一个/最后一个安装孔距端头的距离	28.5	28.5			
Gew.: 导	対重量 (kg/m)	3.0	2.8			

AMSABS 4B S 25 的可选选项

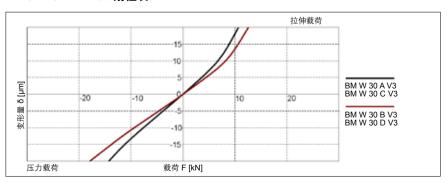
AMSABS 4B W 25 的尺寸和承载力

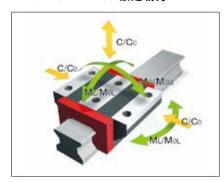

	AMSABS 4B W 25-A	AMSABS 4B W 25-B	AMSABS 4B W 25-C	AMSABS 4B W 25-D		
A: 系统高度	36	36	40	40		
A1:中心线到壳体一端的距离	23.9	23.9	23.9	23.9		
A2: 中心线到扫描头一端的距离	23.9	23.9	23.9	23.9		
A3: 扫描头凸出尺寸	17.4	17.4	17.4	17.4		
B: 滑块宽度	70	70	48	48		
B2: 导轨基准面与滑块基准面之间的距离	23.5	23.5	12.5	12.5		
C1: 前端中心润滑孔的位置	5.5	5.5	9.5	9.5		
C3: 侧面润滑孔的位置	5.5	5.5	9.5	9.5		
C4: 侧面润滑孔的位置	13.75	23.25	18.75	20.75		
C7: 顶部润滑孔的位置	13.5	23	18.5	20.5		
J: 滑块高度	30.5	30.5	34.5	34.5		
L1: 外侧安装孔孔距	45	45	35	50		
L2: 中间安装孔孔距	40	40	-	-		
L9: 滑块带壳体的总长度	177.5	196.5	177.5	196.5		
L11: 壳体长度	105.5	105.5	105.5	105.5		
Lw: 滑块钢体长度	59.5	78.5	59.5	78.5		
N: 侧面安装孔间距	57	57	35	35		
0: 基准面高度	7	7	11	11		
Ts: 端面板厚度	12.5	12.5	12.5	12.5		
承载力和重量						
C0: 静态承载力 (Nm)	46100	60300	46100	60300		
C100: 动态承载力(Nm)	21100	25500	21100	25500		
MOQ: 静态径向翻转力矩(Nm)	631	825	631	825		
MOL: 静态轴向翻转力矩(Nm)	513	863	513	863		
MQ: 动态径向翻转力矩(Nm)	289	349	289	349		
ML: 动态轴向扭矩承载力(Nm)	235	365	235	365		
Gew: 滑块重量(kg)	1.0	1.2	0.9	1.1		

AMSABS 4B W 25 的可选选项



AMSABS 4B 30


AMSABS 4B S 30 导轨图


AMSABS 4B W 30 滑块图

AMSABS 4B W 30 刚性表

AMSABS 4B W 30 额定载荷

AMSABS 4B 30

AMSABS 4BS 30尺寸

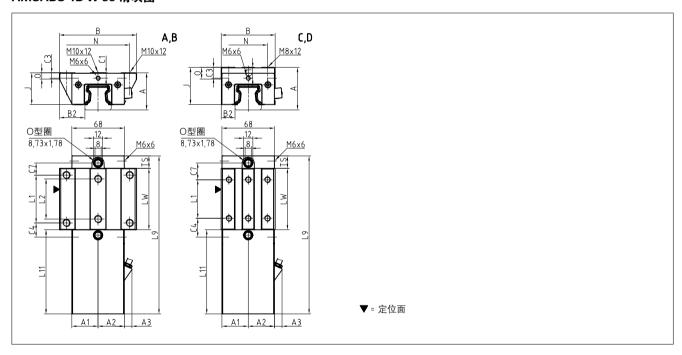
		AMSABS 4B S 30-N	AMSABS 4B S 30-C			
B1:	导轨宽度	28	28			
J1:	导轨高度	26	26			
L3:	导轨最大长度	6000	6000			
L4:	安装孔孔距	80	80			
L5/L10):第一个/最后一个安装孔距端头的距离	38.5	38.5			
Gew.:	导轨重量(kg/m)	4.3	4.1			

AMSABS 4B S 30 的可选选项

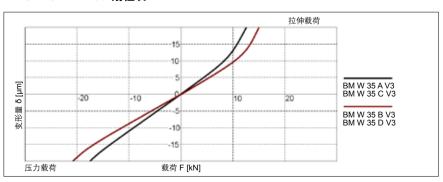
AMSABS 4B W 30 的尺寸和承载力

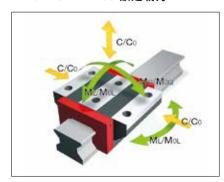
	AMSABS 4B W 30-A	AMSABS 4B W 30-B	AMSABS 4B W 30-C	AMSABS 4B W 30-D		
A: 系统高度	42	42	45	45		
A1: 中心线到壳体一端的距离	29.3	29.3	29.3	29.3		
A2: 中心线到扫描头一端的距离	29.3	29.3	29.3	29.3		
A3: 扫描头凸出尺寸	14.4	14.4	14.4	14.4		
B: 滑块宽度	90	90	60	60		
B2: 导轨基准面与滑块基准面之间的距离	31	31	16	16		
C1: 前端中心润滑孔的位置	7	7	10	10		
C3: 侧面润滑孔的位置	6	6	9	9		
C4: 侧面润滑孔的位置	16.2	27.2	22.2	23.2		
C7: 顶部润滑孔的位置	15.7	26.7	21.7	22.7		
J: 滑块高度	35.9	35.9	38.9	38.9		
L1: 外侧安装孔孔距	52	52	40	60		
L2: 中间安装孔孔距	44	44	-	-		
L9: 滑块带壳体的总长度	190.4	212.4	190.4	212.4		
	107	107	107	107		
Lw: 滑块钢体长度	69.4	91.4	69.4	91.4		
N: 侧面安装孔间距	72	72	40	40		
0: 基准面高度	7.8	7.8	11	11		
Ts: 端面板厚度	14	14	14	14		
承载力和重量						
CO: 静态承载力 (Nm)	63700	83300	63700	83300		
C100: 动态承载力(Nm)	29200	35300	29200	35300		
M0Q: 静态径向翻转力矩(Nm)	1084	1414	1084	1414		
MOL: 静态轴向翻转力矩(Nm)	829	1390	829	1390		
MQ: 动态径向翻转力矩(Nm)	497	599	497	599		
ML: 动态轴向扭矩承载力(Nm)	380	589	380	589		
Gew: 滑块重量(kg)	1.6	1.9	1.4	1.7		

AMSABS 4B W 30 的可选选项



AMSABS 4B 35


AMSABS 4B S 35 导轨图


AMSABS 4B W 35 滑块图

AMSABS 4B W 35 刚性表

AMSABS 4B W 35 额定载荷

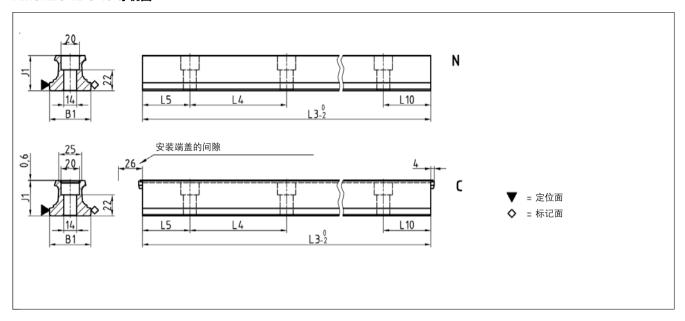
AMSABS 4B 35

AMSABS 4BS 35 尺寸

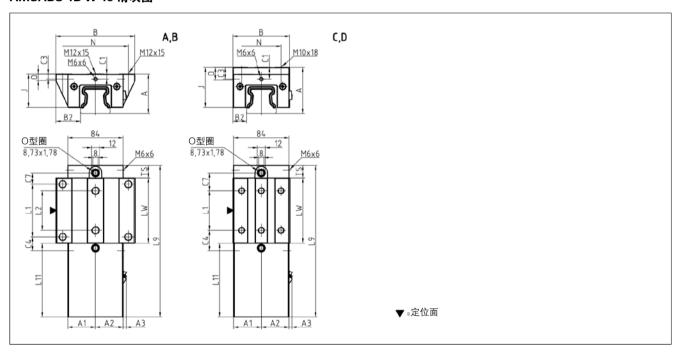
	AMSABS 4B S 35-N	AMSABS 4B S 35-C			
B1: 导轨宽度	34	34			
	29.5	29.5			
L3: 导轨最大长度	6000	6000			
L4: 安装孔孔距	80	80			
L5/L10:第一个/最后一个安装孔距端头的距离	38.5	38.5			
Gew.: 导轨重量 (kg/m)	5.4	5.2			

AMSABS 4B S 35 的可选选项

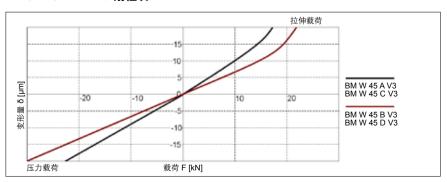
AMSABS 4B W 35 的尺寸和承载力

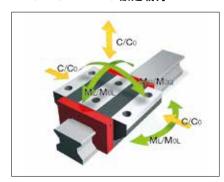

	AMSABS 4B W 35-A	AMSABS 4B W 35-B	AMSABS 4B W 35-C	AMSABS 4B W 35-D		
A: 系统高度	48	48	55	55		
A1:中心线到壳体一端的距离	34	34	34	34		
A2: 中心线到扫描头一端的距离	34	34	34	34		
A3: 扫描头凸出尺寸	10.1	10.1	10.1	10.1		
B: 滑块宽度	100	100	70	70		
B2: 导轨基准面与滑块基准面之间的距离	33	33	18	18		
C1: 前端中心润滑孔的位置	7	7	14	14		
C3: 侧面润滑孔的位置	6.5	6.5	13.5	13.5		
C4: 侧面润滑孔的位置	18.3	31.05	24.3	26.05		
C7: 顶部润滑孔的位置	15.8	28.55	21.8	23.55		
J: 滑块高度	41	41	48	48		
L1: 外侧安装孔孔距	62	62	50	72		
L2: 中间安装孔孔距	52	52	-	-		
L9: 滑块带壳体的总长度	204.6	230.1	204.6	230.1		
	109	109	109	109		
Lw: 滑块钢体长度	79.6	105.1	79.6	105.1		
N: 侧面安装孔间距	82	82	50	50		
0: 基准面高度	8	8	15	15		
Ts: 端面板厚度	16	16	16	16		
承载力和重量						
C0: 静态承载力 (Nm)	84400	110300	84400	110300		
C100: 动态承载力(Nm)	38700	46700	38700	46700		
M00: 静态径向翻转力矩(Nm)	1566	2048	1566	2048		
MOL: 静态轴向翻转力矩(Nm)	1252	2104	1252	2104		
MQ: 动态径向翻转力矩(Nm)	718	867	718	867		
ML: 动态轴向扭矩承载力(Nm)	574	891	574	891		
Gew: 滑块重量(kg)	2.3	2.8	2.2	2.7		

AMSABS 4B W 35 的可选选项



AMSABS 4B 45


AMSABS 4B S 45 导轨图


AMSABS 4B W 45 滑块图

AMSABS 4B W 45 刚性表

AMSABS 4B W 45 额定载荷

AMSABS 4B 45

AMSABS 4B S 45 尺寸

		AMSABS 4B S 45-N	AMSABS 4B S 45-C			
B1:	导轨宽度	45	45			
J1:	导轨高度	37	37			
L3:	导轨最大长度	6 000	6 000			
L4:	安装孔孔距	105	105			
L5/L10	D:第一个/最后一个安装孔距端头的距离	51	51			
Gew.:	导轨重量 (kg/m)	8.8	8.6			

AMSABS 4B S 45 的可选选项

AMSABS 4B W 45 的尺寸和承载力

	AMSABS 4B W 45-A	AMSABS 4B W 45-B	AMSABS 4B W 45-C	AMSABS 4B W 45-D		
A: 系统高度	60	60	70	70		
A1:中心线到壳体一端的距离	42	42	42	42		
A2: 中心线到扫描头一端的距离	42	42	42	42		
A3: 扫描头凸出尺寸	5	5	5	5		
B: 滑块宽度	120	120	86	86		
B2: 导轨基准面与滑块基准面之间的距离	37.5	37.5	20.5	20.5		
C1: 前端中心润滑孔的位置	8	8	18	18		
C3: 侧面润滑孔的位置	8	8	18	18		
C4: 侧面润滑孔的位置	21.05	36.8	31.05	36.8		
C7: 顶部润滑孔的位置	17.05	32.8	27.05	32.8		
J: 滑块高度	50.8	50.8	60.8	60.8		
L1: 外侧安装孔孔距	80	80	60	80		
L2: 中间安装孔孔距	60	60	-	-		
L9: 滑块带壳体的总长度	230.1	261.6	230.1	261.6		
	112	112	112	112		
Lw: 滑块钢体长度	99.1	130.6	99.1	130.6		
N: 侧面安装孔间距	100	100	60	60		
0: 基准面高度	10	10	19	19		
Ts: 端面板厚度	19	19	19	19		
承载力和重量						
C0: 静态承载力 (Nm)	134800	176300	134800	176300		
C100: 动态承载力(Nm)	61900	74700	61900	74700		
M0Q: 静态径向翻转力矩(Nm)	3193	4175	3193	4175		
MOL: 静态轴向翻转力矩(Nm)	2498	4199	2498	4199		
MQ: 动态径向翻转力矩(Nm)	1466	1769	1466	1769		
ML: 动态轴向扭矩承载力(Nm)	1147	1779	1147	1779		
Gew: 滑块重量(kg)	4.0	4.9	4.0	5.0		

AMSABS 4B W 45 的可选选项

AMSABS 4B 导轨配件一览表

配件	AMSABS 4B S 15	AMSABS 4B S 20	AMSABS 4B S 25	AMSABS 4B S 30	AMSABS 4B S 35	AMSABS 4B S 45	
堵头:							
塑料堵头	BRK 15	BRK 20	BRK 25	BRK 30	BRK 35	BRK 45	
盖板:							
盖板(备件)	BAC 15	BAC 20	BAC 25	BAC 30	BAC 35	BAC 45	
盖板端盖(备件)	EST 15-BAC	EST 20-BAC	EST 25-BAC	EST 30-BAC	EST 35-BAC	EST 45-BAC	
盖板封盖(备件)	BSC 15-BAC	BSC 20-BAC	BSC 25-BAC	BSC 30-BAC	BSC 35-BAC	BSC 45-BAC	
装配工具:							
安装盖板的工具	BWC 15	BWC 20	BWC 25	BWC 30	BWC 35	BWC 45	

AMSABS 4B 滑块配件一览表

配件	AMSABS 4B W 15	AMSABS 4B W 20	AMSABS 4B W 25	AMSABS 4B W 30	AMSABS 4B W 35	AMSABS 4B W 45
辅助刮屑板:						
NBR材料辅助刮屑板	ZBN 15	ZBN 20	ZBN 25	ZBN 30	ZBN 35	ZBN 45
Viton橡胶辅助刮屑板	ZBV 15	ZBV 20	ZBV 25	ZBV 30	ZBV 35	ZBV 45
金属刮屑板	ABM 15-A	ABM 20-A	ABM 25-A	ABM 30-A	ABM 35-A	ABM 45-A
波纹罩:						
波纹罩	-	FBB 20	FBB 25	FBB 30	FBB 35	FBB 45
波纹罩连接板(备件)	-	ZPB 20	ZPB 25	ZPB 30	ZPB 35	ZPB 45
波纹罩端面板(备件)	-	EPB 20	EPB 25	EPB 30	EPB 35	EPB 45
装配轨:						
装配轨	MBM 15	MBM 20	MBM 25	MBM 30	MBM 35	MBM 45
自润滑板:						
自润滑板	SPL 15-BM	SPL 20-BM	SPL 25-BM	SPL 30-BM	SPL 35-BM	SPL 45-BM
端面板:						
端面板(备件)	QAS 15-STB	QAS 20-STB	QAS 25-STB	QAS 30-STB	QAS 35-STB	QAS 45-STB
脂润滑油嘴:						
直润滑油嘴	-	SN 6				
45°润滑油嘴	-	SN 6-45				
90° 润滑油嘴	- SN 3-T	SN 6-90 SN 3-T	SN 6-90	SN 6-90	SN 6-90	SN 6-90
M3漏斗式润滑油嘴 M6漏斗式润滑油嘴	SIN 3-1	SN 6-T				
用于SN 3-T和SN 6-T的注油枪	SFP-T3	SFP-T3	SFP-T3	SFP-T3	SFP-T3	SFP-T3
油润滑用变径接头:						
直螺旋接头M3	SA 3-D3	SA 3-D3	-	-	-	-
M8外圆变径接头	-	SA 6-RD-M8				
M8外六角接头	-	-	-	SA 6-6KT-M8	SA 6-6KT-M8	SA 6-6KT-M8
G1/8 外六角接头	-	- CV C D4	- CV C D4	SA 6-6KT-G1/8	SA 6-6KT-G1/8	SA 6-6KT-G1/8
摆角式接头,外接油管直径d=4mm M6摆角式接头		SV 6-D4 SV 6-M6				
加长型M6摆角式接头	-	SV 6-M6-L				
M8摆角式接头	-	SV 6-M8				
加长型M8摆角式接头	-	SV 6-M8-L				

10.4 订货编号

所有的导轨和滑块应根据以下的订货编号进行订货。

AMSABS 4B滑块由滑块、壳体和扫描头组成。

所有的MONORAIL BM 滑块都能用于同规格AMSABS 4B 导轨。

第2章和4.3章详述了配件的订货编号。

单件导轨、滑块和配件都使用各自的订货编号。

所有的导轨组件都是未装配,按标准件单独供货的。

如果需要,SCHNEEBERGER也提供装配好的导轨、滑块和配件作为整套系统。具体请参看2.4章的订货指导。

AMSABS 4B 导轨的订货编号

	1x	AMSABS 4B S	25	-N	-G2	-KC	-R12	-958	-28	-28	-CN	-TA1
数量												
导轨												
尺寸												
导轨类型												
精度												
直线度												
基准面												
导轨长度L3												
始端安装孔中心到最近端头距离L5												
末端安装孔中心到最近端头距离L10												
镀层												
磁尺												

NB

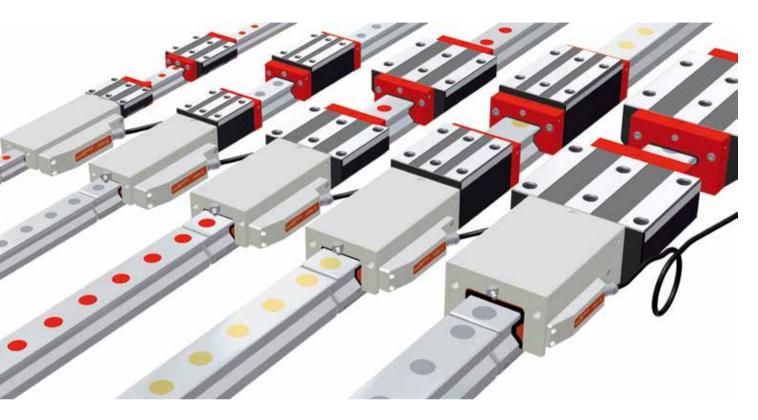
第10.1章到10.3章介绍了所有的型号、具体规格、选项和配件。

第2章描述了所有的选项。

如果可能,L3尺寸最好是标准长度。

这是使用第10.2章中的等式计算得出的: L3=n×L4+L5+L10≤L3max.

AMSABS 4B 滑块的订货编号


	1x	AMSABS 4B W	25	-A	-P1	-G2	-V1	-R1	-CN	-S10	-LN	-ТМН
数量												
滑块												
尺寸												
滑块类型												
扫描头位置												
精度												
预紧												
基准面												
镀层												
润滑接口												
润滑的交货条件												
接头												

NB

第10.1到10.3章介绍了所有的型号、具体规格、选项和配件。

第2章中描述了所有的选项。

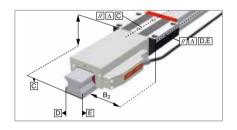
相关接口选项信息,请访问公司网站WWW.SCHNEEBERGER.COM

MONORAIL AMS 3L是一款一体式磁栅测量系统,适用于有防护并对系统精度有较高要求,特别是测量行程较长的应用。从机械角度来讲,AMS 3L 基于MONORAIL MR 滚柱直线导轨的产品性能,设计独特的导轨对接方式和AMSA 3L 扫描头可实现任意长度的测量行程。

与控制系统相连接口采用1Vpp的模拟接口(信号周期200μm)。

有不同的滑块润滑和密封选项可选,以满足不同的应用要求。扫描头可兼容于所有规格,更换简便。

MONORAIL AMSA 3L 系统的特点


MONORAIL AMSA 3L

型号、尺寸和选项

AMSA 3L 导轨简介	Page 194
AMSA 3L 滑块简介	Page 195

11.2 技术参数和选项

AMSA 3L 25	Page 196
AMSA 3L 35	Page 198
AMSA 3L 45	Page 200
AMSA 3L 55	Page 202
AMSA 3L 65	Page 204

11.3 MONORAIL AMSA 3L 配件

配件一览表	Page 206
AMSA 3L 导轨配件详述	Page 207
AMSA 3L 滑块配件详述	Page 56

11.4 订单格式

AMSA 3L 导轨订单格式	Page 208
AMSA 3L 滑块订单格式	Page 208

11.1 型号、尺寸和选项

AMSA 3L 导轨

AMSA 3L 导轨简介

	N 标准型			
导轨规格/导轨类型				
25	AMSA 3L S 25-N			
35	AMSA 3L S 35-N			
45	AMSA 3L S 45-N			
55	AMSA 3L S 55-N			
65	AMSA 3L S 65-N			
特点				
顶部螺栓紧固	•			
单根最长6m	•			

AMSA 3L 导轨可选项

精度

□~ G1 高精密级

直线度

✓ KC 标准

镀层

_____ **CN** 无镀层

叶 硬化镀铬

基准面

基准面在下,磁尺在下

──_ №2 基准面在上,磁尺在上

AMSA 3L 导轨的可选配件

堵头

装配工具

11.1 型号、尺寸和选项

AMSA 3L 滑块

AMSA 3L 滑块简介

滑块规格/滑块类型						
25	AMSA 3L W 25-A	AMSA 3L W 25-B	AMSA 3L W 25-C	AMSA 3L W 25-D		
35	AMSA 3L W 35-A	AMSA 3L W 35-B	AMSA 3L W 35-C	AMSA 3L W 35-D		
45	AMSA 3L W 45-A	AMSA 3L W 45-B	AMSA 3L W 45-C	AMSA 3L W 45-D		
55	AMSA 3L W 55-A	AMSA 3L W 55-B	AMSA 3L W 55-C	AMSA 3L W 55-D		
65	AMSA 3L W 65-A	AMSA 3L W 65-B	AMSA 3L W 65-C	AMSA 3L W 65-D		
特点						
顶部螺栓紧固	•	•	•	•		
底部螺栓紧固	•	•				
用于高承载和扭矩		•		•		

AMSA 3L 滑块可选项

精度

---- GO 超高精密级

:∼G1 高精密级

用于中等承载和扭矩

■~ G2 精密级

G3 普通级

预紧力

// V1 低

小 v2 中等

√ № № 高

S13 □ 左上侧

S23 □ 右上侧

S42 □ 右侧

R2 顶部

基准面

R1 底部

── CN 无镀层

镀层

TH 硬化镀铬

润滑接口

S10 □ 左侧中央

S20 □ 右侧中央

S21 □ 顶部右侧

S12 □ 左下侧

S22 □ 右下侧

出厂润滑保护

△。LN 润滑油保护

LG 润滑脂保护

业 充分润滑

接口

☑ ™ TMU, 模拟式 0.3m

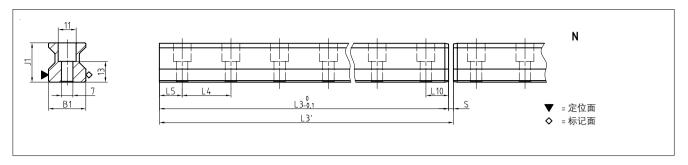
■ TSH TSU, 模拟式 3m

扫描头位置

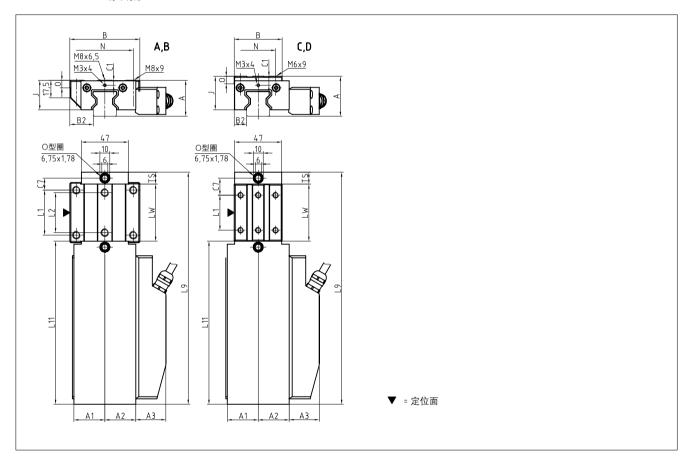
上 P3 左侧底部

AMSA 3L 滑块可选配件

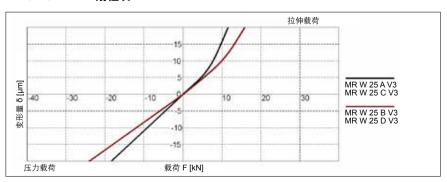
辅助刮屑板 润滑油嘴

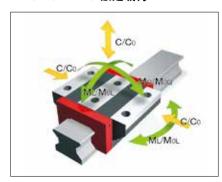

装配轨 润滑连接板

自润滑板


端面板

AMSA 3L 25


AMSA 3L S 25 导轨图


AMSA 3L W 25 滑块图

AMSA 3L W 25 刚性表

AMSA 3L W 25 额定载荷

AMSA 3L 25

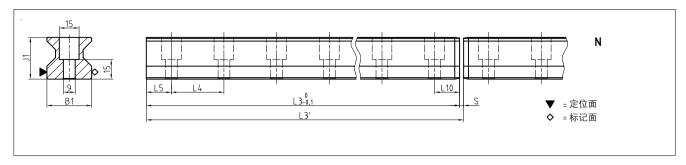
AMSA 3L S 25 尺寸

	AMSA 3L S 25-N			
B1: 导轨宽度	23			
J1: 导轨高度	24.45			
L3: 导轨最大长度	2 999.5			
L3': 系统长度	3 000			
S: 间隙尺寸	0.5			
L4: 安装孔孔距	30			
L5/L10:第一个/最后一个安装孔距端头的距离	14.75			
Gew.: 导轨重量 (kg/m)	3.4			

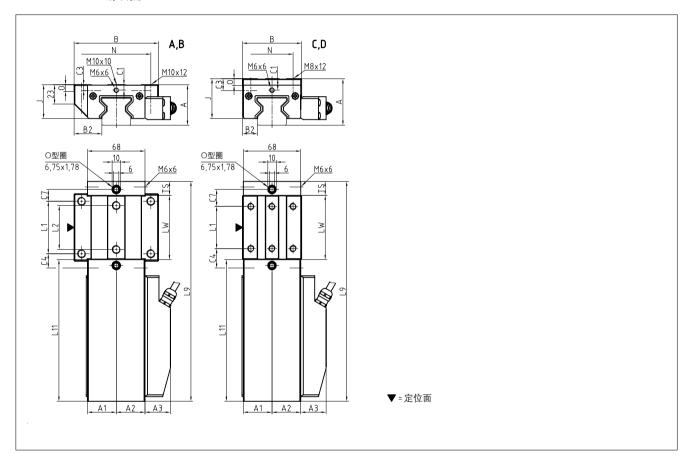
AMSA 3L S 25 的可选选项

AMSA 3L W 25 的尺寸和承载力

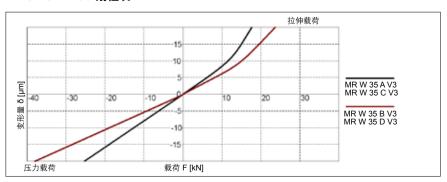
	AMSA 3L W 25-A	AMSA 3L W 25-B	AMSA 3L W 25-C	AMSA 3L W 25-D		
A: 系统高度	36	36	40	40		
A1: 中心线到壳体一端的距离	31	31	31	31		
A2: 中心线到扫描头一端的距离	31	31	31	31		
A3: 扫描头凸出尺寸	30	30	30	30		
B: 滑块宽度	70	70	48	48		
B2: 导轨基准面与滑块基准面之间的距离	23.5	23.5	12.5	12.5		
C1: 前端中心润滑孔的位置*	5 / 5.5	5 / 5.5	9/9.5	9 / 9.5		
C3: 侧面润滑孔的位置	-	-	-	-		
C4: 侧面润滑孔的位置	-	-	-	-		
C7: 顶部润滑孔的位置	12	23.2	17	20.7		
J: 滑块高度	29.5	29.5	33.5	33.5		
L1: 外侧安装孔孔距	45	45	35	50		
L2: 中间安装孔孔距	40	40	-	-		
L9: 滑块带壳体的总长度	232.2	254.6	232.2	254.6		
 L11: 壳体长度	163.2	163.2	163.2	163.2		
Lw: 滑块钢体长度	57	79.4	57	79.4		
N: 侧面安装孔间距	57	57	35	35		
0: 基准面高度	7.5	7.5	7.5	7.5		
	12	12	12	12		
承载力和重量						
CO: 静态承载力(Nm)	49800	70300	49800	70300		
C100: 动态承载力(Nm)	27700	39100	27700	39100		
M0Q: 静态径向翻转力矩(Nm)	733	1035	733	1035		
MOL: 静态轴向翻转力矩(Nm)	476	936	476	936		
MQ: 动态径向翻转力矩(Nm)	408	576	408	576		
ML: 动态轴向扭矩承载力(Nm)	265	521	265	521		
Gew: 滑块重量(kg)	1.4	1.6	1.3	1.4		
ションシャ は ロコ エリ かま は ハルエビナシ						

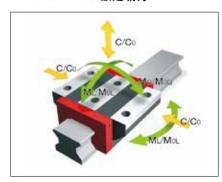

注: *该数值仅对于外部壳体/端面板有效

AMSA 3L W 25 的可选选项



AMSA 3L 35


AMSA 3L S 35 导轨图


AMSA 3L W 35 滑块图

AMSA 3L W 35 刚性表

AMSA 3L W 35 额定载荷

AMSA 3L 35

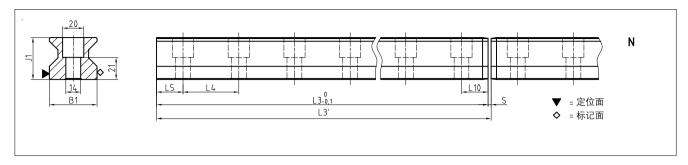
AMSA 3L S 35 尺寸

	AMSA 3L S 35-N			
B1: 导轨宽度	34			
J1: 导轨高度	31.95			
L3: 导轨最大长度	2 999.5			
L3': 系统长度	3 000			
S: 间隙尺寸	0.5			
L4: 安装孔孔距	40			
L5/L10:第一个/最后一个安装孔距端头的距离	19.75			
Gew.: 导轨重量 (kg/m)	6.5			

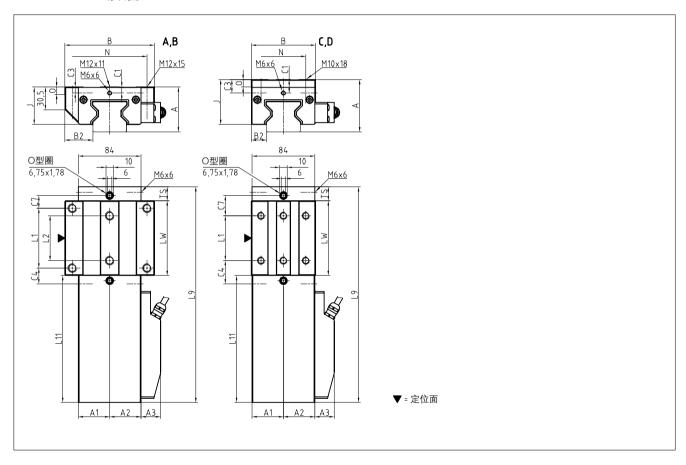
AMSA 3L S 35 的可选选项

AMSA 3L W 35 的尺寸和承载力

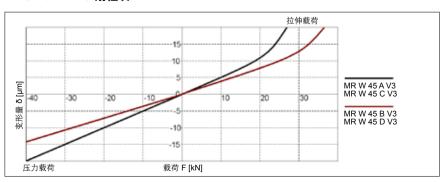
	AMSA 3L W 35-A	AMSA 3L W 35-B	AMSA 3L W 35-C	AMSA 3L W 35-D		
A: 系统高度	48	48	55	55		
A1: 中心线到壳体一端的距离	34	34	34	34		
A2: 中心线到扫描头一端的距离	34	34	34	34		
A3: 扫描头凸出尺寸	30	30	30	30		
B: 滑块宽度	100	100	70	70		
B2: 导轨基准面与滑块基准面之间的距离	33	33	18	18		
C1: 前端中心润滑孔的位置*	6.5 / 7	6.5 / 7	13.5 / 14	13.5 / 14		
C3: 侧面润滑孔的位置	7	7	14	14		
C4: 侧面润滑孔的位置	17	30.5	23	25.5		
C7: 顶部润滑孔的位置	14	27.5	20	22.5		
	40	40	47	47		
L1: 外侧安装孔孔距	62	62	50	72		
L2: 中间安装孔孔距	52	52	-	-		
L9: 滑块带壳体的总长度	260.2	287.2	260.2	287.2		
	167.7	167.7	167.7	167.7		
Lw: 滑块钢体长度	76	103	76	103		
N: 侧面安装孔间距	82	82	50	50		
0: 基准面高度	8	8	8	8		
Ts: 端面板厚度	16.5	16.5	16.5	16.5		
承载力和重量						
CO: 静态承载力(Nm)	93400	128500	93400	128500		
C100: 动态承载力(Nm)	52000	71500	52000	71500		
M0Q: 静态径向翻转力矩(Nm)	2008	2762	2008	2762		
MOL: 静态轴向翻转力矩(Nm)	1189	2214	1189	2214		
MQ: 动态径向翻转力矩(Nm)	1118	1537	1118	1537		
ML: 动态轴向扭矩承载力(Nm)	662	1232	662	1232		
Gew: 滑块重量(kg)	2.5	3.1	2.4	2.9		
注 ************************************						

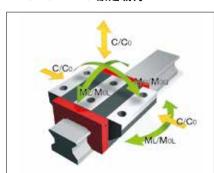

注: *该数值仅对于外部壳体/端面板有效

AMSA 3L W 35 的可选选项


G0 G1 G2 G3	V1 V2 V3 R1	R2 CN CH	S10 ► S20 C	S11 S21 S12 S12 S12
S22 S13 S23 S32 S32 S32 S32 S32 S32 S32 S32 S3	S42 🔲 👠 LN 💹 LG 🔃 LV	TMU TSU P1	Р3	

AMSA 3L 45


AMSA 3L S 45 导轨图


AMSA 3L W 45 滑块图

AMSA 3L W 45 刚性表

AMSA 3L W 45 额定载荷

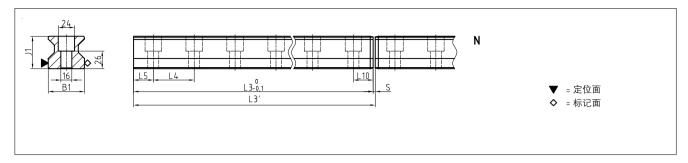
AMSA 3L 45

AMSA 3L S 45 尺寸

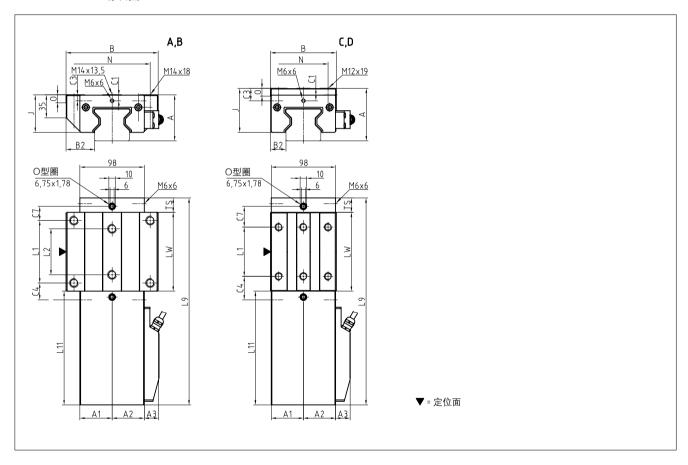
	AMSA 3L S 45-N			
B1: 导轨宽度	45			
J1: 导轨高度	39.95			
L3: 导轨最大长度	2992			
L3': 系统长度	2992.5			
S: 间隙尺寸	0.5			
L4: 安装孔孔距	52.5			
L5/L10:第一个/最后一个安装孔距端头的距离	26			
Gew.: 导轨重量 (kg/m)	10.8			

AMSA 3L S 45 的可选选项

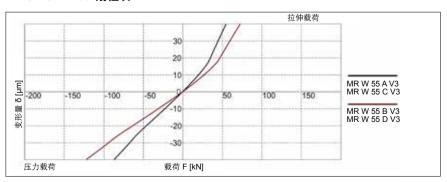
AMSA 3L W 45 的尺寸和承载力

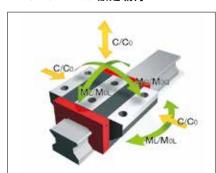

	AMSA 3L W 45-A	AMSA 3L W 45-B	AMSA 3L W 45-C	AMSA 3L W 45-D		
A: 系统高度	60	60	70	70		
A1: 中心线到壳体一端的距离	42	42	42	42		
A2: 中心线到扫描头一端的距离	42	42	42	42		
A3: 扫描头凸出尺寸	26	26	26	26		
B: 滑块宽度	120	120	86	86		
B2: 导轨基准面与滑块基准面之间的距离	37.5	37.5	20.5	20.5		
C1: 前端中心润滑孔的位置	8	8	18	18		
C3: 侧面润滑孔的位置	8	8	18	18		
C4: 侧面润滑孔的位置	21.5	38.75	31.25	38.75		
C7: 顶部润滑孔的位置	17	34.5	27	34.5		
J: 滑块高度	50	50	60	60		
L1: 外侧安装孔孔距	80	80	60	80		
L2: 中间安装孔孔距	60	60	-	-		
L9: 滑块带壳体的总长度	288.7	323.7	288.7	323.7		
	169.9	169.9	169.9	169.9		
Lw: 滑块钢体长度	100	135	100	135		
N: 侧面安装孔间距	100	100	60	60		
0: 基准面高度	10	10	10	10		
Ts: 端面板厚度	18.8	18.8	18.8	18.8		
承载力和重量						
CO: 静态承载力(Nm)	167500	229500	167500	229500		
C100: 动态承载力(Nm)	93400	127800	93400	127800		
M0Q: 静态径向翻转力矩(Nm)	4621	6333	4621	6333		
MOL: 静态轴向翻转力矩(Nm)	2790	5161	2790	5161		
MQ: 动态径向翻转力矩(Nm)	2577	3527	2577	3527		
ML: 动态轴向扭矩承载力(Nm)	1556	2874	1556	2874		
Gew: 滑块重量(kg)	4.4	5.5	4.2	5.2		

AMSA 3L W 45 的可选选项



AMSA 3L 55


AMSA 3L S 55 导轨图


AMSA 3L W 55 滑块图

AMSA 3L W 55 刚性表

AMSA 3L W 55 额定载荷

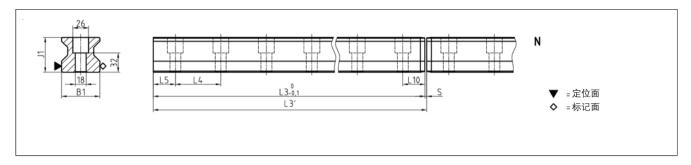
AMSA 3L 55

AMSA 3L S 55 尺寸

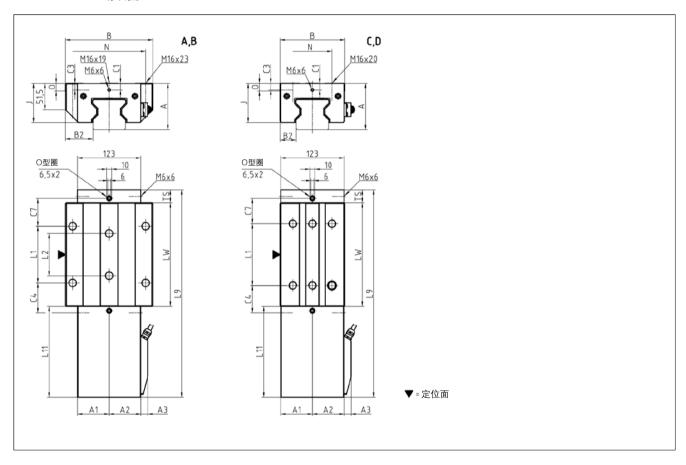
	AMSA 3L S 55-N			
B1: 导轨宽度	53			
J1: 导轨高度	47.95			
L3: 导轨最大长度	2999.5			
L3': 系统长度	3 000			
S: 间隙尺寸	0.5			
L4: 安装孔孔距	60			
L5/L10:第一个/最后一个安装孔距端头的距离	29.75			
Gew.: 导轨重量 (kg/m)	15.2			

AMSA 3L S 55 的可选选项

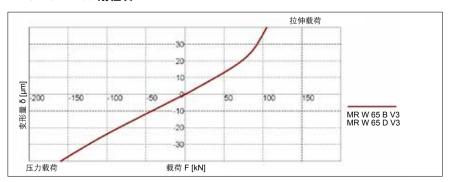
AMSA 3L W 55 的尺寸和承载力

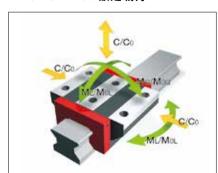

	AMSA 3L W 55-A	AMSA 3L W 55-B	AMSA 3L W 55-C	AMSA 3L W 55-D		
 A: 系统高度	70	70	80	80		
A1: 中心线到壳体一端的距离	49	49	49	49		
A2: 中心线到扫描头一端的距离	49	49	49	49		
A3: 扫描头凸出尺寸	22	22	22	22		
B: 滑块宽度	140	140	100	100		
B2: 导轨基准面与滑块基准面之间的距离	43.5	43.5	23.5	23.5		
C1: 前端中心润滑孔的位置	9	9	19	19		
C3: 侧面润滑孔的位置	9	9	19	19		
C4: 侧面润滑孔的位置	25.75	46.75	35.75	46.75		
C7: 顶部润滑孔的位置	21.5	42.5	31.5	42.5		
	57	57	67	67		
L1: 外侧安装孔孔距	95	95	75	95		
L2: 中间安装孔孔距	70	70	-	-		
L9: 滑块带壳体的总长度	314.7	356.7	314.7	356.7		
L11: 壳体长度	172.9	172.9	172.9	172.9		
Lw: 滑块钢体长度	120	162	120	162		
N: 侧面安装孔间距	116	116	75	75		
0: 基准面高度	12	12	12	12		
Ts: 端面板厚度	21.8	21.8	21.8	21.8		
承载力和重量						
CO: 静态承载力(Nm)	237000	324000	237000	324000		
C100: 动态承载力(Nm)	131900	180500	131900	180500		
M0Q: 静态径向翻转力矩(Nm)	7771	10624	7771	10624		
MOL: 静态轴向翻转力矩(Nm)	4738	8745	4738	8745		
MQ: 动态径向翻转力矩(Nm)	4325	5919	4325	5919		
ML: 动态轴向扭矩承载力(Nm)	2637	4872	2637	4872		
Gew: 滑块重量(kg)	6.4	8.2	5.9	7.5		

AMSA 3L W 55 的可选选项



AMSA 3L 65


AMSA 3L S 65 导轨图


AMSA 3L W 65 滑块图

AMSA 3L W 65 刚性表

AMSA 3L W 65 额定载荷

AMSA 3L 65

AMSA 3L S 65 尺寸

	AMSA 3L S 65-N			
B1: 导轨宽度	63			
J1: 导轨高度	57.95			
L3: 导轨最大长度	2999.5			
L3': 系统长度	3 000			
S: 间隙尺寸	0.5			
L4: 安装孔孔距	75			
L5/L10:第一个/最后一个安装孔距端头的距离	37.25			
Gew.: 导轨重量 (kg/m)	22.8			

AMSA 3L S 65 的可选选项

■ G1 KC	CN CH	R11 R22	2
---------	-------	---------	---

AMSA 3L W 65 的尺寸和承载力

	AMSA 3L W 65-A	AMSA 3L W 65-B	AMSA 3L W 65-C	AMSA 3L W 65-D		
A: 系统高度	90	90	90	90		
A1: 中心线到壳体一端的距离	61.5	61.5	61.5	61.5		
A2: 中心线到扫描头一端的距离	61.5	61.5	61.5	61.5		
A3: 扫描头凸出尺寸	13.5	13.5	13.5	13.5		
B: 滑块宽度	170	170	126	126		
B2: 导轨基准面与滑块基准面之间的距离	53.5	53.5	31.5	31.5		
C1: 前端中心润滑孔的位置	13	13	13	13		
C3: 侧面润滑孔的位置	13	13	13	13		
C4: 侧面润滑孔的位置	31.75	58	51.75	53		
C7: 顶部润滑孔的位置	27.75	54	47.75	49		
」 J: 滑块高度	76	76	76	76		
L1: 外侧安装孔孔距	110	110	70	120		
L2: 中间安装孔孔距	82	82	-	-		
L9: 滑块带壳体的总长度	349.7	402.2	349.7	402.2		
	176.2	176.2	176.2	176.2		
Lw: 滑块钢体长度	148.5	201	148.5	201		
N: 侧面安装孔间距	142	142	76	76		
0: 基准面高度	15	15	15	15		
	25	25	25	25		
承载力和重量						
CO: 静态承载力(Nm)	419000	530000	419000	530000		
C100: 动态承载力(Nm)	232000	295000	232000	295000		
M0Q: 静态径向翻转力矩(Nm)	16 446	20912	16446	20912		
MOL: 静态轴向翻转力矩(Nm)	10754	17930	10754	17930		
MQ: 动态径向翻转力矩(Nm)	9154	11640	9154	11640		
ML: 动态轴向扭矩承载力(Nm)	5954	9980	5954	9980		
Gew: 滑块重量(kg)	12.6	15.9	10.3	12.8		

AMSA 3L W 65 的可选选项

AMSA 3L 导轨配件一览表

配件	AMSA 3L S 25	AMSA 3L S 35	AMSA 3L S 45	AMSA 3L S 55	AMSA 3L S 65	
堵头:						
塑料堵头	MRK 25	MRK 35	MRK 45	MRK 55	MRK 65	
铜堵头	MRS 25	MRS 35	MRS 45	MRS 55	MRS 65	
钢堵头	MRZ 25	MRZ 35	MRZ 45	MRZ 55	MRZ 65	
装配工具:						
AMSA 3L的装配工具	MWM 3L 25	MWM 3L 35	MWM 3L 45	MWM 3L 55	MWM 3L 65	
安装钢堵头的工具	MWH 25	MWH 35	MWH 45	MWH 55	MWH 65	
用于MWH的液压缸	MZH	MZH	MZH	MZH	MZH	
端盖:						
AMSA 3L 导轨端盖	EST 3L 25	EST 3L 35	EST 3L 45	EST 3L 55	EST 3L 65	

AMSA 3L 滑块配件一览表

配件	AMSA 3L W 25	AMSA 3L W 35	AMSA 3L W 45	AMSA 3L W 55	AMSA 3L W 65	
辅助刮屑板: NBR材料辅助刮屑板 Viton橡胶辅助刮屑板 金属刮屑板	ZCN 25 ZCV 25 ASM 25-A	ZCN 35 ZCV 35 ASM 35-A	ZCN 45 ZCV 45 ASM 35-A	ZCN 55 ZCV 55 ASM 55-A	ZCN 65 ZCV 65 ASM 65-A	
波纹罩: 波纹罩 波纹罩连接板(备件) 波纹罩端面板(备件)	FBM 25 ZPL 25 EPL 25	FBM 35 ZPL 35 EPL 35	FBM 45 ZPL 45 EPL 45	FBM 55 ZPL 55 EPL 55	FBM 65 ZPL 65 EPL 65	
装配轨: 装配轨	MRM 3L 25	MRM 3L 35	MRM 3L 45	MRM 3L 55	MRM 3L 65	
自润滑板: 自润滑板	SPL 25-MR	SPL 35-MR	SPL 45-MR	SPL 55-MR	SPL 65-MR	
端面板: 端面板(备件)	STP 25-EK	STP 35-EK	STP 45-EK	STP 55-EK	STP 65-EK	
脂润滑油嘴: 直润滑油嘴 45°润滑油嘴 90°润滑油嘴 M3漏斗式润滑油嘴 M6漏斗式润滑油嘴 用于SN 3-T和SN 6-T的注油枪	SN 6 SN 6-45 SN 6-90 SN 3-T SN 6-T SFP-T3	SN 6 SN 6-45 SN 6-90 - SN 6-T SFP-T3	SN 6 SN 6-45 SN 6-90 - SN 6-T SFP-T3	SN 6 SN 6-45 SN 6-90 - SN 6-T SFP-T3	SN 6 SN 6-45 SN 6-90 - SN 6-T SFP-T3	
油润滑用变径接头: 直螺旋接头M3 M8外圆变径接头 M8外六角接头 G1/8 外六角接头 摆角式接头,外接油管直径d=4mm M6摆角式接头 加长型M6摆角式接头 加长型M8摆角式接头	SA 3-D3 SA 6-RD-M8 - - SV 6-D4 SV 6-M6 SV 6-M6-L SV 6-M8 SV 6-M8-L	SA 6-RD-M8 SA 6-6KT-M8 SA 6-6KT-G1/8 SV 6-D4 SV 6-M6 SV 6-M6-L SV 6-M8 SV 6-M8-L	SA 6-RD-M8 SA 6-6KT-M8 SA 6-6KT-G1/8 SV 6-D4 SV 6-M6 SV 6-M6-L SV 6-M8 SV 6-M8-L	SA 6-RD-M8 SA 6-6KT-M8 SA 6-6KT-G1/8 SV 6-D4 SV 6-M6 SV 6-M6-L SV 6-M8 SV 6-M8-L	SA 6-RD-M8 SA 6-6KT-M8 SA 6-6KT-G1/8 SV 6-D4 SV 6-M6 SV 6-M6-L SV 6-M8 SV 6-M8-L	

AMSA 3L 导轨配件详述

装配工具

MWM3L 装配工具用于安装AMSA 3L导轨的对接安装,包括一个安装滑块,两个安装支架和两个扫描头用于标记相位。另外,MWM安装工具还配有校正测量用的显示软件和使用说明。

订货编号: **MWM 3L xx** xx=规格, 例如: 1 x MWM 3L 55

端盖

AMSA 3L 允许客户定制成套导轨中首根和末根导轨的长度。 按客户要求切割长度后,EST 3L端盖用于防止磁尺护条脱落。

订货编号: **EST 3L xx** xx=规格, 例如: 1 x EST 3L 55

11.4 订货编号

所有的导轨和滑块应根据以下的订货编号进行订货。

AMSA 3L滑块由滑块、壳体和扫描头组成。

所有的MONORAIL MR 滑块都能用于同规格AMSA 3L 导轨。

第2章和3.3章详述了配件的订货编号。

单件导轨、滑块和配件都使用各自的订货编号。

所有的导轨组件都是未装配,按标准件单独供货的。

如果需要,SCHNEEBERGER也提供装配好的导轨、滑块和配件作为整套系统。具体请参看2.4章的订货指导。

AMSA 3L 导轨的订货编号

	1x	AMSA 3L S	35	-N	-G1	-KC	-R11	-3000	-CN	-TR 40
数量										
导轨										
尺寸										
导轨类型										
精度 精度										
直线度										
基准面										
导轨长度L3										
镀层										
磁尺										

NB

第11.1章到11.3章介绍了所有的型号、具体规格、选项和配件。

第2章描述了所有的选项。

如果可能,L3尺寸最好是标准长度。

这是使用第11.2章中的等式计算得出的: L3=n×L4+L5+L10≤L3max.

AMSA 3L 滑块的订货编号

	1x	AMSA 3L W	35	-В	-P1	-G1	-V3	-R2	-CN	-S12	-LN	-TSU
数量												
滑块												
尺寸												
滑块类型												
扫描头位置												
精度												
预紧												
基准面												
镀层												
润滑接口												
润滑的交货条件												
接头												

NΒ

第11.1到11.3章介绍了所有的型号、具体规格、选项和配件。

第2章中描述了所有的选项。

相关接口选项信息,请访问公司网站WWW.SCHNEEBERGER.COM

10.1061/03/0615/e/2.0/SRO/WD/Printed in Germany. Subject to technical changes.

SCHNEEBERGER

美国

E-Mail:

新加坡

Fax E-Mail:

SCHNEEBERGER Inc.

Woburn, MA 01801-1759

Phone +1 781 271 0140 Fax +1 781 275 4749

info-usa@schneeberger.com

SCHNEEBERGER LINEAR

160 Paya Lebar Road, #05-04

TECHNOLOGY PTE. Ltd.

Orion Industrial Building

Phone + 65 6841 2385 Fax + 65 6841 3408

info-sg@schneeberger.com

409022 Singapore

44 Sixth Road

SCHNEEBERGER 公司

SCHNEEBERGER AG St. Urbanstrasse 12 4914 Roggwil/BE

Phone +41 62 918 41 11 +41 62 918 41 00

E-Mail:

info-ch@schneeberger.com

施耐博格(上海)传动技术有限 公司 上海市长宁区仙霞路137号 盛高国际大厦606室 上海,200051

+86 21 6209 0027 +86 21 6209 0102 电话

info@schneeberger-sh.com

SCHNEEBERGER India Pvt. Ltd. 406, 4th Floor, Satra Plaza, Palm Beach Road, Sector 19D Vashi, 400 703 New Mumbai

Phone +91 22 6461 0646 +91 22 6461 1756

E-Mail: info-in@schneeberger.com

SCHNEEBERGER 矿物铸件工厂

捷克共和国

SCHNEEBERGER Mineralgusstechnik s.r.o Prumyslový park 32/20 350 02 Cheb - Dolní Dvory

Phone +420 354 400 941 +420 354 400 940

info-mineralguss@schneeberger.com

渔闻

Gräfenau

F-Mail:

75339 Höfen/Enz

SCHNEEBERGER GmbH

Phone +49 7081 782 0 Fax +49 7081 782 124

info-d@schneeberger.com

Nippon SCHNEEBERGER KK

3-20-5 Tranomon, Minato-ku,

Crane Tranomon Bldg. 7F

Phone +81 3 6435 7474 Fax +81 3 6435 7475

info-j@schneeberger.com

Tokyo 105-0001

施耐博格(常州)测试系统有限公司 常州新区汉江路137号 常州 213002

+86 519 8988 3938 +86 519 8988 5115

邮箱: info-mineralcasting@schneeberger.com

SCHNEEBERGER 销售部门

SOUTH EAST EUROPE Mobile +43 676 935 1035

info-a@schneeberger.com

AUSTRIA AND

ISRAFI

Mobile +972 5 0551 7920

E-Mail: info-il@schneeberger.com

BENELUX

Mobile +31 6 5326 3929

info-nl@schneeberger.com

POLAND, SLOVAKIA, **CZECH REPUBLIC**

Mobile +420 6 0278 4077

E-Mail: info-cz@schneeberger.com **DENMARK, SWEDEN**

章大利

E-Mail:

SCHNEEBERGER S.r.I.

Phone +39 0331 93 2010 Fax +39 0331 93 1655

info-i@schneeberger.com

SCHNEEBERGER Korea Ltd.

310, Gangnam-Daero, Gangnam-Gu,

UNION Center Building 1004, 10th FI

Phone +82 2 554 2971 Fax +82 2 554 3971

info-kr@schneeberger.com

Korea 135-754

Via Soldani 10 21021 Angera (VA)

Mobile +31 6 5326 3929

info-nl@schneeberger.com

RUSSIA, BELARUS, UKRAINE

Mobile +7 985 960 85 53 Mobile +38 050 407 6789 Mobile +37 529 860 0410

E-Mail:

info-ru@schneeberger.com

FRANCE

Mobile +33 6 0941 6269

info-f@schneeberger.com

SPAIN, PORTUGAL **ANDORRA**

Mobile +34 69 559 05 99

E-Mail: info-es@schneeberger.com **GREAT BRITAIN**

Mobile +44 77 8814 5645

info-uk@schneeberger.com

TURKEY

Mobile + 90 545 320 83 55

E-Mail: info-tr@schneeberger.com

www.schneeberger.com

